Could a Classical Probability Theory Describe Quantum Systems?
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Quantum Mechanics (QM) is a quantum probability theory based on the density matrix. The
possibility of applying classical probability theory, which is based on the probability distribution
function (PDF), to describe quantum systems is investigated in this work. In a sense this also
addresses the question of the possibility of a Hidden Variable Theory (HVT) of quantum systems
(QSs). Unlike Bell’s inequality, which is respected or not by QSs needs to be checked experimentally,
in this work HVT is ruled out by theoretical consideration. We propose five experimental facts of
QSs as test stones of any quantum theories. Our approach here is to construct explicitly the most
general HVT, which agrees with the five QS facts and to check its validity and acceptability. Our
five facts include facts concerning subsequently repeated quantum measurements (in the sense of

quantum non-demolition measurement). We show that those facts play an essential role at ruling
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out classical theories even on a single spin-s quantum object. We also examine Bell’s HVT and
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Bohm’s HVT against the five facts and rule them out.

PACS numbers: 03.65.Ta, 03.65.Aa, 03.65.Ud

I. THE QUESTION AND THE COMMON
GROUND TO START THE DISCUSSION

We regard quantum mechanics (QM), a theory based
on wave amplitude |¢) or density matrix p, as a quan-
tum probability theory (QPT) as it possesses the fol-
lowing properties: first, for a given complete set of or-
thogonal vectors {|u)}, it gives a classical probability
distribution (u|p |p); second, for any other such vector
sets related with the former one by unitary transforma-
tions, say [v) = >, Uy, [p), it also gives another classical
probability theory, with probability distribution (v|p |v),
which is related by the same unitary transformations,
(v|plv) = (u|UTpU |u). Meanwhile, what we mean by
classical probability theory (CPT), is a theory based on
the classical probability distribution function (PDF) in-
stead of the density matrix, which possesses only the first
property.

The goal of this work is to examine the possibility of
describing quantum systems (QSs) by a CPT. To put it
another way, it is the possibility of replacing the QPT,
which is a successful theory of QSs, equivalently by a
CPT. The question is whether exists a map from den-
sity matrices, which can be off-diagonal, to probability
distribution functions, which are diagonal. There are al-
ready famous answers to this question from two different
aspects. First, the Bell’s Theorem|[1, 2| rules out local
(or non-contextual) classical theories for QSs provided
that it is an established (although currently it is still
not) experimental fact that Bell’s inequality is violated
by QSs. Second, Theorem 7.1 in Ref.[3] proves that there
is an equivalent HVT model for every statistical model,
including QM, which is also a statistical model. In a
sense these two already provide the ultimate answer to

the above question: there are such CPTs for QSs, but
they have to be non-local (contextual). However, some
physicists are willing to accept contextual theories[4] of
QSs since it is a philosophical matter, or a matter of
taste. More physical significance of such CPTs for QSs,
especially those concerning mathematical simplicity and
concrete mathematical relations among physical quanti-
ties, should be investigated and revealed to check the
acceptability of such CPTs. Furthermore, as we men-
tioned above ruling out local CPTs for QSs relies on fur-
ther experiments. In this work, we will try to uncover
more inevitable mathematical features of such CPTs and
examine their physical meaning. In doing so, we build
up our theories on only well-established experimental re-
sults. In the following, we have listed five QS facts (QS-I
to QS-V) respected by all quantum measurement experi-
ments. As demonstrated later, in this work we show that
if only QS-I and QS-II are required it is not impossible
to have a classical theory, but it is impossible to have a
classical probability theory respecting all five facts and
convex property of mixed states (CPMS, defined later).
We will see next how we address this question and why
we claim the answer is negative.

First of all, we clarify our terminology and establish an
unambiguous language as a starting point of this discus-
sion. Firstly, it is necessary to distinguish between the
terms QM and QS. By QM we refer to the usual axiom-
atized system of quantum theory while QS is reserved to
refer to systems showing quantum properties in experi-
ments. We will explicitly define both later. We require
theories to respect behavior of QS, not any axioms or de-
rived theorem in QM. For example, the uncertainty prin-
ciple, is regarded as a derived theorem in QM, but not
an observed behavior of QS. Of course, one may argue
about that, but we distinguish them explicitly for rea-



sons that will become apparent soon. Secondly, in this
work, we limit our attention to description of static quan-
tum systems, excluding quantum evolution. Hence, only
axioms about quantum measurement in QM and only
quantum measurement experiments are the subjects we
will focus on. For example, if we say CPT can describe
a QS, it means CPT can explain all quantum measure-
ment results of that QS. We wish to, at this point, avoid
the discussion of evolution of QSs in a form of CPT be-
cause evolution is less nontrivial but more technically
intense. Furthermore, we will focus on only projective
measurements. It is not because that we think extending
the projective measurement to Positive Operator Valued
Measure (POVM)[5] is trivial, but that we believe when
we aiming towards a classical theory of quantum systems
we require that the theory at least is capable of describ-
ing the subset of quantum measurements — projective
measurements. Thirdly, we deal only with two systems,
namely a single %—spin system and an entangled two %—
spin system. In QM language, they both have finite di-
mension. Discussion on the above systems can easily be
generalized to general QSs including infinite systems with
continuous variables.
The QSs are systems with the following properties:

QS-I There are a set of physical quantities asso-
ciated with the system whose values we can
measure. For each of them, when measure-
ment is performed on a state of the quantum
system, only finite outcomes will be observed.
In addition, for every single measurement,
only one specific outcome appears.

QS-IT If the same state is prepared, i.e. different re-
alizations of the system go through the same
preparation procedure, and the same mea-
surement is performed on this ensemble, there
is a statistical limit for the chance of the ap-
pearance of a certain outcome.

QS-III If in some way the state of the quantum sys-
tem is not destroyed as in the case of quan-
tum non-demolition measurement and it can
be measured again upon the resulted state
of the previous measurement, then a subse-
quent measurement of the same physi-
cal quantity will give us the same outcome
as in the previous measurement, with proba-
bility 1.

QS-IV If a subsequent measurement is made
but of a different physical quantity, then
still finite possible outcomes will be observed,
with again one outcome from each single
measurement, along with their existing sta-
tistical limits.

QS-V States, which are represented by the
same density matrix in the mathemati-
cal form of the usual QM, can be prepared

by possibly different procedures but are not
distinguishable by any quantum measure-
ments. One example, which can be gener-
alized easily, is the following two states of
a spin %: state I is prepared as following,
with probability % / %, we use the apparatus
to prepare the spin into the up-/down- state
along z direction; state II is prepared with
half possibility into the up-state along ™ =
(9 = %’r, = g) direction and half possibility
into the up-state along 5 = (9 = %”, = 37”)
direction. Here 6, ¢ are the usual spherical
coordinators. Let’s assume we have an appa-
ratus preparing a spin into any desired states.
This gedanken experiment can be checked in
real experiments and here we regard this as
a fact. This requires that a proper theory of
quantum systems should have the same rep-
resentation for the above two states. Here we
have used the notations of the usual QM just
to define the states before we construct the

formalism of the alternative theories.

The possibility or impossibility of measuring two physical
quantities simultaneously, which while playing an impor-
tant role in logic chains of usual QM, has not been taken
as one of the QS facts here.

The usual QM realizes those properties of a QS
through axioms:

QM-I States of a quantum object are N x N her-
mitian positive-defined normalized matrices
p on a complex linear space H with dimen-
sion N, equipped with a definition of inner
product. The set of such density matrices
is denoted as N (#H), the normalized positive
operators over H.

QM-II Physical quantities are hermitian operators
on H. Their set is denoted as O (H). Physi-
cal quantities are measurable. The measure-
ment of A on a system at state p, results
event « (meaning value of observable A is
recorded as «) with probability p,. o« is
one of the eigenvalues of A (assumed non-
degenerate but could be trivially generalized)
and p, = (| pla).

QM-III The state of the object after measurement,
given the observed value is a, is |a) {a].

In a finite dimensional Hilbert space, the number of
eigenvalues of an operator is finite. QM-II realizes both
QS-I and QS-II. QM-III realizes QS-IIT in that if the same
measurement is repeated subsequently, the outcome must
be o and with probability 1.

In order to realize QS-IV, one needs to consider basis
transformations in Hilbert space, that one vector could
be expanded under difference bases. After measurement
of A provided the outcome is event «, the system stays



at p = |a) («|. If one then measures for example B with
eigenvalues {5}, then according to QM-II, the event of a
specific 5 will appear with probability pg = (8| p|8) =
(8| ) («| B). This explain QS-IV.

The usual QM implements QS-V by using convex
property of mixed states (CPMS): p = pp; +
(1 — p) po for state (p) prepared by two mutually exclu-
sive procedures (p1,p2) with respectively probability p
and (1 —p). One can confirm that state II in QS-V
leads to the same density matrix with state I in QS-V
via the probability summation rule,

[ig}zll P f—f] n
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Therefore no measurement can tell their difference. Con-
ceptually we want our alternative theory, whatever it is,
to respect CPMS. Our usual QM respects CPMS. There-
fore QM realizes all the five experimental facts of a QS.

Next we construct a classical theory, which does not
need to respect the QM axioms at all, but still respects
QS-I, QS-II, QS-III, QS-IV and QS-V, also preferably
CPMS. In a usual discussion of Hidden Variable Theory
(HVT), only the first two, QS-I and QS-II, are required to
be respected by the theory. We will see that if only these
two are required it is not impossible to have a classical
theory, but it is impossible to have a CPT respecting all
five facts and CPMS.

We have to mention that firstly usually the state is
destroyed after measurement, however, quantum nonde-
molition measurements[6] (QNM) allows us to make sub-
sequently repeated measurements. Secondly, they are not
valid for general POVM. However, as we discussed above
here we consider only projective measurements. There-
fore we take QS-III/IV also as an experimental fact. Also
worth mentioning is that we did not include finite accu-
racy of real measurements into our experimental facts.
Usual QM (QM-I, II, III) embraces non-zero commuta-
tors between operators so it supports the idea of the Un-
certainty Principle. However, as argued by Bohm [7],
on the fundamental level one could not tell if it is really
impossible to measure some quantities simultaneously or
it is just because of the problems of limited technology
or accuracy of experiments. This gives us the possibil-
ity to relax non-commutation relations between physical
quantities when necessary.

Explicitly what we refer to as a CPT means the fol-
lowing:

CPT-I States form set of event 2. There is a map
P from o-Algebra F of Q to [0,1]. P satis-
fies the Kolmogorov axioms of probability[8].
Only physical quantities corresponding to
members of F are observable. A simpler case,
which is quite often the case of a physical
system, is that the set  is a set of count-
able simple events, which are mutually ex-
clusive, and F is the trivial topology, set
of all subsets of €). In our discussion, we

only work with this simple case. For exclu-
sive events, if AN B = ¢,A,B € F, then
P(AUB) = P(A) 4+ P(B). And for inde-
pendent events, A ® B € F (1 ® {2z) where
Ae F(h),B € F(Qg), then P(A® B) =
P(A)-P(B).

CPT-II Observables are A € F. When the mea-
surement of any such A is performed, every
value of w € A C ) can be observed, with
corresponding probability P (w).

CPT-III After the measurement, the system is at
the observed state. Provided event w is
recorded, the state of the object after mea-
surement is w.

The validity of CPT-III is not really explicitly defined in
the usual probability theory. CPT itself does not address
this at all, but CPT is usually interpreted in this way. For
example, imagine a truly random perfect die. After it is
measured, say showing number 6, then one would like to
say it is at the state with face value 6. However, what
it really means experimentally, is if the die is measured
again, it is guaranteed that one will observe the same
value, here 6, with probability 1. Therefore, although
CPT-III is quite natural, it can be altered if necessary.
We also notice CPT respects CPMS as implied in CPT-I.

After clarifying the terminology, the question we seek
to discuss is better defined. We are looking for a CPT,
which follows CPT-I, CPT-II, CPT-III, of two systems:
a single %—spin and two entangled %—spins, which both
possess QS-I, QS-II, QS-III, QS-IV and QS-V. We will
set the state of the single-spin system at |1), and the
two-spin system at a singlet state % (It = |[41)). Al-
though we aim at using CPT as an alternative theory for
quantum systems, we will still use the usual QM language
to denote their states. In other words, we admit QM is
a theory for quantum systems but we seek to determine
if QS can also be described by a classical theory such
as CPT. One key difference between the above QM and
CPT, is with/without superposition principle (or coher-
ent summation), as it is usually called by physicists, that
(n+v) € H,Vu,v € Hbut p+v ¢ Q,Vu,v € Q. This is
the central difference between QM and CPT. From this
viewpoint, our work here is to find a theory without this
superposition principle but still describing successfully all
QS facts.

In fact, Spekkens has demonstrated a “classical” toy
theory with the superposition principle enabled.[9] In
that case, representations of the states, if put in forms
of density matrices, depend on the basis vectors. There-
fore, the density matrices could have non-zero diagonal
elements. We believe that the key difference between a
classical theory and a quantum theory is indeed the va-
lidity of the superposition principle, or in another word,
existence of non-zero off-diagonal elements in the density
matrices. Hence, in this sense, Spekkens’s toy theory
has extended the scope of classical theories. Throughout



this work, we are looking at the possibility of describing
quantum systems by a theory without the superposition
principle. Therefore, discussion of Spekkens’s toy the-
ory and its alike is out of the scope of this work. In
CPT-I, we have limited the scope of classical theories to
be the classical probability theory built upon countable
mutually exclusive simple events. There is no coherent
summation among classical events.

To provide a unified language for both the classical
and quantum theory in our discussion, in §II we will put
both CPT and QPT formally into density-matrix forms.
In section §III we discuss why we want to have such a
map. After that we will present a CPT for a single-spin
system and a CPT for a two-spin system, in section §V
and §VI respectively. We will see that what kind of CPT
is necessary to fully describe quantum systems. We will
then discuss why our CPT violates Bell’s inequality and
what is the possible interpretation of such CPT. Finally
in section §VII we conclude that if we are willing to accept
all the prices we have to pay to have such a CPT for
quantum system, our CPT could be the one. However,
we will find that in that case it is even harder to be
understood as compared with the usual QM.

II. DENSITY MATRIX LANGUAGE FOR BOTH
CLASSICAL AND QUANTUM SYSTEMS

In density matrix language for QM, the state of a
quantum object is represented by a density matrix p? (¢).
The evolution is described by a unitary transformation
U(t)=2U(0,t) as

P =U&)p" (0 U (1), (2)

where generally U (t) is determined by H, the Hamilto-
nian of the quantum object. For a pure initial state, the
above density matrix formalism is equivalent with the
usual wave function or right vector formalism, but it can
also describe a mixed state. For example, we can con-
sider an exclusive mixed state as used in Von Neumann’s
picture of quantum measurement[10],

Pq:ZPi|¢i><¢z‘\7 3)

where {|¢;)} is a set of orthogonal normalized vectors.
According to Von Neumann’s picture, the meaning of
such an exclusive state is that every sample of this object
chooses one of {|¢;)} with probability p;.

This interpretation reminds us of the PDF of a truly
random classical object (TRCO), which generally should
be included as an object of classical mechanics (CM). A
state of a TRCO is a PDF p (x) normalized over Q2 = {z},
the set of all its possible states. It’s therefore possible to
rewrite this PDF as a density matrix

p° = p(@)|e)(al, (4)

zEQ

which gives exactly the same information provided by a
PDF. One could just regard this as another notation of a
discrete PDF. For the purpose of normalization we also
require that simple events are exclusive,

(w]a') =0 (x—a"), ()

where 6 (x — ') is the Kronecker delta for the discrete
set 2. In QM, generally a state of a quantum system is
a full structure density matrix, while in CM, a state of
a TRCO is a diagonal density matrix. Considering only
discrete sets allows us to use the notation |r) and inner
product (z |y) = 05, without any problem. Although
physicists use such notation also for continuous systems,
mathematicians do not use |z) as a basis vector, or use
Dirac ¢ function as a basis of function space, for continu-
ous systems. Most expressions in physicists’ notation can
be mapped onto rigorous mathematicians’ notation[11],
but we do not want to discuss that in any more details
here. We limit our description to discrete systems only.
For example, a perfect die is such an object.

From this point forward, we are going to use density
matrix notation for both QS and TRCO. Furthermore,
we can even formally construct a similar dynamical the-
ory to describe classical evolution processes. For exam-
ple, if we denote the evolution process as a linear oper-
ator 7T, then time evolution of such classical objects can
be defined as

PPOET (e (0) = p@)T () ().  (6)

It is possible to construct the relation between 7 and the
classical Hamiltonian H, although here we will not do so
explicitly. Formally, we can use the evolution operator T’

as T (la) (x]) = (T]2) (| T) = [z (&) {a (t)], s0
o () = Tp* (0) T (7)

Also TT? = T'T = I, which can be proven as fol-
lows: first, for a system fully determined by x, we have

d(x(t) —y(t) =0 (x—y) = (z]y), then
(@ T ly) = (=) [y (@) = () —y(t). (8)

Therefore, both QM and CPT are unitary evolution the-
ories of density matrices, while the difference between
them is the existence of off-diagonal elements. From this
point of view, our task in this work is to put a full-
structure density matrix into a diagonal density matrix.
We call this a question of finding a diagonalization map.
The reason we introduce TRCOs is to help towards the
understanding of classical objects and, later, quantum
objects. By emphasizing “truly random”, we are not
referring to objects which behave randomly because of
the uncertainty in their initial conditions. For a TRCO
there is intrinsically no way, even for “God”, to tell its
real state before a measurement is performed. We only
can say it stays in a classical mixed state. One may ar-
gue that a physical classical object is not a truly random



object. Imagining such a TRCO, however, will help us
to understand the classical and quantum measurement
process.

To conclude this section, we want to point out that
our language of the diagonal density matrix for CPT and
the non-diagonal density matrix for QM provides a uni-
fied description of classical and quantum mechanics such
that relation between classical and quantum theory can
be discussed in this language. Besides this, statistical
operators[12] and C*-algebra[13] also provide languages
unifying description of classical and quantum systems.
However, one should notice that whichever language is
used, the fact that classical systems are described by
PDF's and their equivalences, while quantum systems are
described by density matrices and their equivalences, has
never been changed. Only the forms of those equiva-
lences are different. For example, they are F° (¢, x,p)
for classical systems and F? (¢, z,y) for quantum systems
in statistical operator formulation; and in C*-algebra
language[13], states are elements of convex set S, which
in the classical case becomes a usual set of simple events
and their convex combination, but in the quantum case
also allows summation — not only convex summation —
of pure states. Another formal difference between CM
and QM in C*-algebra language is commutative/non-
commutative relation between observables. From this
viewpoint, in this work, we are searching for a theory
based on commutative C*-algebra for QSs. As we will
see later, while different forms of diagonal density ma-
trices are tried in searching for CPT for QSs, algebraic
relation among observables is changed at the same time.
However, in the present work we prefer density matrix
language to this C*-algebra language simply for consider-
ation of familiarity of density matrices among physicists.

III. WHY ARE WE LOOKING FOR SUCH A
MAP?

If we have a CPT as desired, it is an HVT of quantum
systems. Quantum systems are no longer quantum but
TRCOs. Therefore, one can understand quantum mea-
surement if one can understand measurement of TRCOs.
The most straightforward picture of a measurement is
a measurement on a deterministic classical object. As-
sumed as a discrete system, it stays in state |z) (x| before
it is measured but the observer does not know. After the
measurement we get the information that it was in state
|x) (x| and it remains in state |x) (x|. The less straight-
forward picture of a measurement is a measurement on a
statistically random classical object. Here the term “sta-
tistically random” means that the nature of this object
is still deterministic, but with incomplete information it
appears as a random object. For every given such ob-
ject, we just do not know its state but it is already fixed.
This also means its randomness is only meaningful as in
an ensemble. This is called statistical interpretation of
probability theory. Again for such an object, it is in state

|z) (x| before measurement (the observer does not know)
and after the measurement we get the information that it
was in state |z) (x| and it remains in state |z) (z|. Notice
that although x can be one element of a large set, it is
fixed according to probability p (z) before the measure-
ment is performed.

Measurement on a TRCO is less understandable. As-
suming such an object really exists for the moment, its
state is unknown before measurement. After the mea-
surement we find with probability p(x) that it was in
state |z} (x| and it remains in state |x) (x| afterwards.
Here we find that a phenomena so-called “collapse” of
probability function has occurred. While this seems less
understandable, both “statistical randomness” and “true
randomness” give us the same measurement result. One
could never distinguish which is the “real” one from mea-
surements. It is a pure philosophical question to ask
whether the state is statistically random or truly random
and so from now on we will treat them as the same.

Now imagine we have two correlated TRCOs which
have exactly the same states, but unknown. Since they
are both TRCOs we do not know their states before
the measurement. If we measure one of them, say we
find that it stays in state |z) (x|, then we immediately
know the state of the other object is also |z) (z|. In
this sense, if we assume the existence of such TRCOs,
“spooky action”[14] exists even in classical mechanics.
Quantum “spooky action” in entangled systems is not
stranger than its classical version at all. They are differ-
ent just in that in the quantum singlet state of two spins,
there is a freedom in choosing which direction (72) to mea-
sure. This is related to basis transformation, which in
turn is related again to the superposition principle.

Provided there is a TRCO description of quantum
systems, the two problems of quantum measurement,
namely collapse of the wave function and measurement
of entangled states, become collapse of the probability
function and measurement of classical correlated states
in measurement of TRCOs. This implies that if one be-
lieves that measurement of TRCOs is understandable,
then measurement of quantum systems is also under-
standable.

Here we assume TRCO Assumption: there is no diffi-
culty or confusion in understanding measurement of TR-
COs. Even if it is questionable, if TRCO can describe
quantum systems, then we know the problem of quantum
measurement comes from classical probability theory and
has nothing to do with any other quantum nature. Of
course the situation will be different if we find out that
TRCOs can not describe quantum systems.

We can formally compare measurement of TRCOs and
quantum systems. Here we include both auxiliary system
m and object system o explicitly into our formal descrip-
tion. The measurement includes three steps:

CMeaure-I A classical correlated state is formed by
an interaction process, so that from an initial



state of

we get

pc,o®pc,m H pC om

= Zp(x) |t ® M (2)) (x @ M (z)].
I (10)

CMeaure-II When we only check the value
recorded on the auxiliary system, we get the
auxiliary system’s partial distribution, which

is
Zp

where tr° means the trace is performed over
the object’s state space, a standard procedure
in probability theory when only information
on the partial distribution is needed.

c,m A r° c om

)M (z)], (1)

CMeaure-III According to the exclusiveness nature
of | M (z)) (M (x)| and CPT-III, the sampling
process gives us one specific state M (x*).
This happens with the desired probability
p(z*), due to CPT-II. M (z*) on the auxil-
iary system means z* on the measured ob-
ject.

However, since the general quantum density matrix has
non-zero off-diagonal terms, the picture of quantum mea-
surement is slightly different:

QMeaure-I An interacting process evolves a quan-
tum system to establish entanglement
P10 @ pPT 5 pT =" puy [ @ M (1)) (v @ M (v)],
nv
(12)
where initially

=5 o I} (0. (13)

QMeaure-IT When we check only the value
recorded on the auxiliary system, we obtain
the auxiliary system’s partial distribution,

=X onlM O I ()

q,m A q om

p

QMeaure-IIT This then becomes a “classically”
quantum state, which has exactly the same
form of Eq. (11) under the given basis.
Therefore, the sampling process gives us one
specific state M (z*). This happens with the
desired probability p (x*) and M (z*) on the
auxiliary system means x* on the measured
object.

However, we should point out that for a quantum ob-
ject, equ(14) is not a copy of equ(13), while equ(11) is
an exact copy of equ(9) for a classical object. Therefore,
if TRCOs could never describe quantum system, even
with the TRCO Assumption, quantum measurement is
still harder to understand than measurement of TRCOs.
However, if we have a CPT for quantum system, then
quantum measurement is just as understandable as mea-
surement of a TRCO. Instead of making measurement
as a coherent part of evolution, we have shown above
that even classical measurement is different with classi-
cal evolution. Therefore the fact that the same holds for
quantum measurement is not a surprise.

As we have seen, due to CPT-III, a classical measure-
ment ends up with an exact copy of the object state. In
fact, this is called a broadcasting and it has been proven
that a quantum system can not be broadcast in quantum
no-broadcasting theorem (QNBT)[15]. Unless the object
system initially stays in one of a set of known orthogo-
nal states, a quantum system can not be broadcast. In
our language, this means when a system is in a classical
probability combination of known orthogonal states, i.e.
a diagonal density matrix under a known basis, it can be
broadcast. This is a broadcast of a TRCO.

An arbitrary unknown state of a TRCO can be broad-
cast, or a diagonal density matrix state can be broad-
cast. Therefore, if the above diagonalization mapping
exists, through it, a quantum system can also be broad-
cast. This would conflict with QNBT, which is proven
in the language of usual QM. This leads to two possibil-
ities: firstly, QNBT holds and diagonalization mapping
does not exist; or secondly, QNBT is not valid and the
mapping exists. Now we find that QNBT is also reduced
to the existence of the diagonalization mapping. There-
fore, it seems all the confusing and “extraordinary” prob-
lems in QM including quantum measurement, HVT and
QNBT come down to one question, the existence of such
diagonalization mapping.

The relation between QNBT and HVT can be shown
more explicitly. A TRCO can be broadcast, by intro-
ducing a classical hidden variable. For example, let us
use a perfect two-faced die as a TRCO. We introduce a
classical signal A, generated from a given PDF p (\) over
I' = {A}. The state of the die is determined by this signal
as follows,

=3 s W) H+ D p- N (=], (15)

el Aer

where it is required that

/ oy (A

where [ could be interpreted as [ or ) for continuous
or discrete variables respectively. Similarly, later on
should be understood in the same way. We then dupli-
cate this hidden variable signal, send a copy to another
die while the original signal is sent to the original die.

/ drp. (16)



Each die determines its state respectively according to
the value of its hidden variable. Now we get a broadcast
of the die. In this sense, it is fair enough to say that the
success of an HVT for CM makes it possible to broadcast
a classical object. So what about an HVT for QM?

IV. A POSSIBLE TRCO AND
UNDERSTANDING OF ITS MEASUREMENT

Consider a quantum system coupled with a large ther-
mal bath and assume that we have the technology to
quickly measure eigenvalues of Hamiltonian of the cen-
tral quantum system. It is so quick that compared with
the relaxation time of this composed system, it can be
neglected. Our measurement is performed once in a while
with the time interval between measurements being much
longer than the typical relaxation time. The outcomes of
such measurements will give us a sequence of eigenvalues
whose probability of appearance follows classical Boltz-
mann distribution. Do we now believe that the system
stays in one of the eigenstates before any measurements?
Further, does our belief matter? It seems there is no
difficulty in accepting the results from this measurement
as is. From this example, we wish to argue that our as-
sumption of the existence of TRCO and the validity of
TRCO Assumption, which states there is no problem in
understanding measurement of TRCO, is plausible.

V. CPT FOR SINGLE-SPIN SYSTEM

The possibility of a CPT or an HVT for quan-
tum system has been long investigated by many great
physicists[1-3, 7, 16-18]. Bell’s Theorem[1] says that all
local HVT should obey the Bell’s inequality, which is not
respected by QM. Experimental tests suggest that QS
does violate the Bell’s inequality so QM is a preferred
theory of QS[19]. But this statement has not yet been
supported by all physicists. Others accept this but turn
to construct explicitly contextual HVTs for QS[4]. In the
following, we will try to answer this problem in another
way. We are willing to go as far as possible to construct
a CPT to give consistent results with quantum systems
including all five QS facts. If this effort fails we will find
where and why; or if it succeeds, we will check whether
it is acceptable or not. We are not aiming at any explic-
itly contextual HVTs, but we will discuss such theories
if they have to be so. If it succeeds, according to Bell’s
Theorem, it should be non-local. It would be interest-
ing to show explicitly the place where non-locality (or
contextuality) enters the theory. In fact, Theorem 7.1 in
[3] proves that there is an equivalent HV'T model for ev-
ery statistical model, including the QM. QS-I and QS-II
can be reproduced. Physical implications of such possi-
ble HVT is discussed further by the same author in [18],
where it is shown to be not compatible with complemen-
tarity and nonseparability. Compared to those works,

our work is different in that except the five QS facts,
no additional presumably reasonable property of QS is
assumed. For example, even CPMS and CPT-III are re-
garded as theoretical consideration only, so that they are
allowed to be modified. We will clearly see later what
are the physical implications of such an HVT. In [17],
the author discussed a similar question of “How to make
quantum mechanics look like a hidden-variable theory
and vice versa” using the Wigner distribution. Also in
more general coherent-state representation, an effective
PDF can be constructed[20] to make the theory appear
very similar with a CPT. However, such a PDF can have
negative values so it it not really a CPT. Moreover, it
does not respect even QS-I. Here in this paper, to dis-
cuss the same question, we insist Kolmogorov-type CPT
and try to make it successful as far as possible. For the
sake of simplicity of language, in this paper, we regard
CPT and HVT of a quantum system as having the same
meaning and later on just simply call them HVT.

According to our general framework, HVT is in a clas-
sical diagonal density matrix form,

PE=D e () |z () (2 (V)] (17)

el

where z is the dynamic variable, X is the hidden random
variable and x (\) is an onto mapping, p (x (\)) is a PDF
over I' = {\}, a set of exclusive events,

@z (V) =6(A=X). (18)

One thing that is necessary to indicate here, is the pa-
rameter A is abstract, not limited as a single variable. A
successful HVT has to respect all QS facts. We will start
from QS-I and II.

A. CPT based on exclusiveness of all elementary
pure events

We first consider a single spin-1 as in Bohm’s HVT[7],
and then focus on an entangled object with two subsys-
tems as discussed in Bell’s inequality[1]. For simplicity,
let’s just consider a specific quantum state, a %—spin in
the state of 1), the up state of S,. In the language of
QM, it’s

1 = 5 (1), (1, + 100, (. + 10, €11, + 19, QL) - (19)

For an HVT, the first trial density matrix will naturally
be,

P = o () I, (1L + 3 - () ), (. (20)
p Az

with the following requirement to give correct results for
measurement on S,

1
/F (Daps (0= 5 = [ a0 @
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However, this gives the consistent results with QS-I and
IT only for S, measurement. We can also measure S,.
If we still respect the possible non-commutative relation
between quantum operators S, and S, then we need to
do a basis transformation in H? and do measurement of
Sz. We get

3 20r. [+ (A2) +p— (W) (1), (H, + 1), ()
+3 20p, [+ (A2) = p— )] (1), (M, + 10, (11,)-
(22)
We can see that, according to equ(21), the result of this
measurement will be % probability to get up and % to
get down. This is obviously wrong. We know for the
specific state we chose above, the correct result of the S,
measurement is the up state only. This HVT does not
realize QS-I and II.

There is one way to overcome this inconsistency with
the price that not only one hidden variable, but also an-
other hidden variable is needed. In order to get correct
results for measurement on S, and S, we need

hvt  __
p =

P = lz pr ) 1) (114 D2 o Q) ). (U,
As Az

+3 e M) ), + D - ) 1), <¢|w] ;
e e
(23)

with the requirement,

[ haps O =1, [ dnp-)=0. )
T, A

N is a normalization constant to keep tr (p) = 1 and here
N = 2. With this density matrix, a measurement of S,
will give the up state only. We can similarly include S,
terms using another hidden variable ;. However, a suc-
cessful HVT should respect QS-I and II for measurement
on an arbitrary direction. For this purpose, will three
hidden variables corresponding to S, Sy, S, be enough?
For example, for a measurement of

Sy = sinf cos ¢Sy + sin O sin ¢Sy, + cos 6., (25)
on the above state, the possible outcomes are
1
sr=5 (sinf cos ¢ £ sin O sin ¢ + cos ). (26)

This could be a continuous number, not only :i:%. We
see that it does not respect QS-I. So QS-I requires one
hidden variable for measurement on every direction and
abandonment of the inherent relation between operators
such as equ(25). Furthermore such a multi-hidden vari-
able density matrix has one very important implication,
that according to equ(18), all states (events) correspond-
ing to arbitrary directions should all be exclusive events.
Thus we call it an exclusive-event HVT (EHVT). This

implies S Sr, = 0 and our CPT density matrix has to
be

P = 5 S oy I+ DU (2

where

. 1+7r, . 1—1r,
pr (7)) = Tvm(rb 5

(28)

There is a technical problem and another non-trivial
conceptual problem with the above PDF. The techni-
cal problem is the value of N. Since we need to keep
tr (p'“’t) = 1 and there is an infinite number of direc-

tions, AV will be infinity if ¢r (p"*") is simply,

tr (") = 3 [t I+ (™ 1] (29)

7

One way to define a “proper” tr (p"*) to avoid such di-

vergence is to decompose 7 = (sin 6 cos ¢, sin 0 sin ¢, cos 6)
and treat

tr (o) = [ dodsin [(1 6" 1)+ (10" 1).]

(30)
In this case, NV = 4. This introduces additional relative
probability between states corresponding to different 7.
This may not be a proper definition, however, it is still
possible to solve this technical question of divergent nor-
malization constant by some other means. If only relative
probability of a given direction 7'is concerned in real mea-
surements, this problem does not affect the outcomes at
all. Because of this, in the following, we simply drop the
normalization constant A/

The other problem is rather serious. Due to the full ex-
clusiveness between all events, the meaning of a measure-
ment changes. “Measuring S7” for a specifically given 7
is no longer a pure elementary event but a compound
event. A pure elementary event instead would be “mea-
suring S”, with no specific direction given. The result of
such a measurement will be one direction, which got ran-
domly picked up during the measurement process, and
an up- or down- state, would be recorded correspond-
ingly with the right probability. In this way, there is no
guarantee that the randomly picked-up direction will be
the desired direction of an observer.

A classical die would be a good example of a classi-
cal probability distribution based on all exclusive events.
From a perfect 6-faced die, we wish to only measure the
relative probability between face 1 and face 2. We could
still get all 6 numbers, but we discard all the other four
if they turn out to be the outcomes of our measurement.
Therefore, effectively, we will find out that the state of
the die within the subspace is,

(1) (1 +12) 21) - (31)

P =

NN

Similarly measurement of S on our p"* will be one of

all of the exclusive events, and during our analysis of



the results, we can discard all irrelevant events. In real
quantum measurements, however, we never find such ir-
relevant and redundant outcomes. If we measure S, ac-
cording to the all-exclusive nature, in a classical mea-
surement of the above state, sometimes our apparatus
detects nothing and sometimes it detects the right state
— up. However, in a real quantum measurement, assum-
ing there are no further experimental accuracy limits,
such detecting-nothing events never happen. What we
get is only the up- or down- state of a given direction.
This shows that, in fact, the above state based on exclu-
siveness is not the desired state. Or if it is, then this is
only possible if the system somehow knows the intention
of the observer during the process.

This “contextual” relation between system and ob-
server is unexpected, however, some physicists may still
be willing to accept such a theory since it is a problem
about interpretation not about any predictions from the
theory.

Now we will try to make EHVT compatible with QS-
IIT and QS-IV. CPT-III tells us that if all events are
exclusive, then after a measurement, for example along
the x direction, given the up state is recorded, its state is
simply [1), (], A subsequently repeated measurement
along the z direction results in event up again. This is
the expected result stated in QS-III. However, if the sub-
sequently repeated measurement is along the z direction,
for state |1), (1],, the exclusiveness tells us, that there
is not any such events as measurement along z direction.
So we would again get a detecting-nothing event. This
conflicts with QS-IV. Furthermore, the

initial state is the up state along the x direction, there-
fore after a measurement along the x direction, nothing
changes. If CPT-III holds, we see the state before and
after the measurement is respectively,

Phcfore = D [pr (F) 1) e (Tl + 00 (M 1) (U (32)

77‘

and
Petter = 1My (T (33)
where
147, 1—r,

pr (1) = ,py(7) =

Eq.(32) and Eq.(33) are obviously different. The state
stays the same before and after the measurement, how-
ever, we find its expressions are different before and after
the measurement. This means CPT-III is wrong. A state
after it has been revealed in a measurement is not the
state corresponding to the measurement result. We will
have to also sacrifice CPT-IIT after abandoning Eq.(25).

(34)

2 2

CPT-III" After a measurement, the object stays at
the state which guarantees a subsequently re-
peated measurement in accordance with QS-
IIT and QS-IV. For example, for spin—% after

a measurement on S, and a up-state being
recorded, the state is,

147 .
pgﬁer = Z [4_;‘710 e M+ ——— Dx Uz -

7

If a down-state is recorded after measurement
of o, we can simply replace 7y with —7 in
Eq.(35).

This CPT-III" could not be understood easily.

Furthermore, this is not a consistent theory. We al-
ready know that an up-state along the z direction, be-
fore and after measurements of Sy, is Eq.(32). Given this
state if we want to calculate the probability of observing
the up-state along the z direction, we will do

{ piﬁu,p = <T|3: pZ:}ore |T>x = 17
pzdnwn = <\l’|m pl}::;ore |\L>m = 0

This gives the correct answer that the relative probability
between up- and down-state is 1. But notice that we
times (1], from the left and [1), the right to a density
matrix to get the probability of p,, . In doing so we
assume that vector | 1), stands for the event of an up-state
along the x direction, but it is different from Eq.(32),
which is the expression standing for the event of an up-
state along the x direction as we previously pointed out.
We have now two different expressions for the same state
in a theory.

Therefore we conclude that the first rescue of HVT,
based on the assumption of the exclusiveness among all
{S7}, failed to achieve a consistent theory satisfying si-
multaneously QS-I, QS-II, QS-IIT and QS-IV. To do so
we will not have inherent relation between operators as
in Eq.(25), we will have to put a twist on CPT-IIIT and
allow “contextual” communication between object and
observer. Even after all these, we would not be able to
get a self-consistent theory. We will now try another
more plausible construction of CPT for QS, based on in-
dependence of all pure elementary events. In C*-algebra
language, we have just tried the trivial commutative mul-
tiplication Sy, Sz, = 0 among operators {Sz} for the ex-
clusive case. Next let us consider another commutative
algebra, direct product Sr, ® Sy, assuming independence
among operators {Sg}.

(36)

B. CPT based on independence of pure elementary
events

Although the idea of exclusive events fails, in fact,
there is another way to save the idea of HV'T, being that
A, and A, are independent events, so that an HVT den-
sity matrix could be,

phvtzzp(x)|...,xF(AF),...><...,IF(AF),...|,
{X3



where i is a random variable for direction 7 and
z7 (A7) =1,). Notation A refers to an infinite dimen-
sional vector (Ag, -+, Ay, -+, A;,---). Under this inde-
pendent event assumption, measurement on every direc-
tion is done independently. This is only possible if all S .,
operators corresponding to all directions S are commu-
tative and every operator could be treated independently.
We call this independent-event HVT (IHVT).

IHVT requires too abandoning inherent relation as in
Eq.(25) and the non-commutative relation between quan-
tum operators. A valid multiplication between opera-
tors is the direct product, Sr, ® Sr,. A common basis is
|(Tz or \Lw)7 7(TU or \I(y>7 a(Tz or iz)a) We
have an infinite number of hidden variables to represent
all directions of measurement. in principle, by choosing

appropriate p (X) one can always fulfill QS-I and II. For
example, the following scheme gives the correct results

on measurement of Sy. For direction 7= (r4,7y,72), we
choose \p € {—%, %}, a two-value discrete random vari-

able as the hidden variable. Then we require, tr=" (-),
the partial trace except direction 7 of p"* gives,

. 7 he 147 1—7r
o 2 T () = S ) L =T ) (U
(38)
for example, by requiring

ph’ut — H'F@ pg’ut. (39)

Notice the product state in Eq.(39) is just one example,
not necessary required, while Eq.(38) is a strict require-
ment. There are many more density matrices in the form
of Eq.(37) and satisfying Eq.(38). Independence of pure
elementary events does not lead to independent product
states. However, from now on we will simply use Eq.(39)
to as an representative of all possible forms of density
matrices.

One can check that this satisfies QS-I and II for mea-
surement on an arbitrary 7 direction. The outcomes
could be 1 or | with probability of H% and 1‘% re-
spectively. Furthermore, IHVT does not require contex-
tuality between object and observer. After the partial
trace only the desired direction will survive. The partial
trace is a standard procedure for an independent ran-
dom variable. The above explicitly constructed density
matrix gives the correct results for measurement on any
directions. We see that IHV'T is at least as valid as Bell’s
HVT on a spin § object[2] as they both respect QS-I and
QS-II. It is less controversial than our former EHVT.

Will IHVT realize QS-IIT and QS-IV? The answer is
“yes” for QS-III. According to CPT-III, after measure-
ment, the system stays at the state corresponding to the
observed value of the observable and all the others states
corresponding to other observables remain at the same
states. For example, when we measure S, with the out-
come being up, the state after measurement is

hvt H\)Z <T|Z ® <T|z pl}::;ore |T>z
pa,fter - ot .
tr== <<T|z pb:fore |T>z>

(40)
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If measured on S, again the outcome is still up. What if
the second measurement is on a different direction, say
S.?7 We have,

pzup,l’down = t’l“ (|*l’>a; <‘l’|a: pZ?ier)
=0 (1, U Ph2fore W 11).)

tr== (11, ot e 11).)

where we make use of the fact that the state is initially x

direction up, (1, p?é’}ore l4), = 0. However, this number

is expected to be % according to QM prediction. This
shows our HVT does not respect QS-IV if CPT-III holds.

Thus we need to modify CPT-III to the following,

CPT-III" After a measurement, the object stays
at the state which guarantees that, a subse-
quently repeated measurement gives the right
result, stated in QS-IIT and QS-IV. For ex-
ample, for spin—% after a measurement on Si,
and a up-state is recorded, it stays at, pv?

satisfying,
ot 1T -T0 1—7-7
= Sy (e = e e (42)

If a down-state is recorded after measurement
of Sy,, we can simply replace 7y with —7( in
Eq.(42).

IHVT implies it is in principle possible to measure S
along several directions simultaneously, which is impos-
sible in current practical quantum measurement. If it is
proven that it is impossible then THVT should be dis-
carded, and QM should be the only choice of description
of QS.

This version of CPT-III has the same inconsistency as
the last exclusive-event HVT. Given a x direction up-
state, represented by Eq.(38), if we want to calculate the
probability of x direction up-state, we do

Pa,, = tr (|1, (11, p") = 1. (43)

This gives us the correct result, however, with the as-
sumption that |1), (1|, refers to the z direction up-state,
which is not the state which really means the x direction
up-state as in Eq.(38). Although this theory suffers all
the above difficulties, it is less controversial than the for-
mer theory. Now let us try to make it consistent with

QS-V.

C. QS-V and twisted CPMS

We have shown that Eq.(39) satisfies QS-I, II, IIT and
IV with a twisted CPT-III. Let us now check if it also
respects QS-V and CPMS.



According to CPMS, the first preparation gives us
state,

1 3
I 11 12
=-p+-p° 44
p 4 4 (44)

Here p'! is a product state of pL! that p!'' = Il ® pl!,

1+7r, 1—r,
F o= o el 5 e (49)
pl2 is a product state of p}f,
1—7r, 147,
pF = = e (et —5= e (e (46)

Similarly, the second preparation gives us state,

1 1
17 21 22
=—p"' + =p*°. 47
P 5P T 5P (47)

Here p?! is a product state of p2',

V3 V3 1

T+r, 3 +r,L 1—r,% —r,5
PR =2 Tl gy T2 T ),
(48)

p22 is a product state of p?,

1—7’7£+er 1Jr7'7£—7’zl
R e DT
(49)

We can see that

ph #p'. (50)

So they are different density matrices thus our HVT does
not respect QS-V.

However, we notice that if we compare the results after
a partial trace tr—" on p! and p!!, they are the same,

tr"(p") = o + ot = pE + pF =t (p"), (51)

Vi € R3. QS-V is satisfied. However, now CPMS is
twisted that it holds only on the level of reduced density
matrices, tr—" (p), not for the whole density matrices p.
In Ref.[21], Srivinas concluded similarly that HVT is not
compatible with CPMS. A subtle difference is that we
claim that IHVT violates CPMS too but not QS-V. While
QS-V is a fact, CPMS is only a seem-natural theoretical
requirement. So it is not impossible to break CPMS.

D. Test of Bell’s HVT and Bohm’s HVT on the
five QS facts

We have shown that, at some huge cost, our EHVT
and THVT could respect the five QS facts. Now let us
also check Bell’'s HVT and Bohm’s HVT. Imagine we
are given one of the five states below and a measurement
device as will be explained. We then are asked to find out
if there is one system which could not be distinguished
from the first one.
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QM: A quantum spin-1 at po = [1), (1],

CM: A classical two-faced die at state pg = % |1), (1], +

EHVT: A classical vector pointing to arbi-
trary  directions with  probability  pg =
& [[ dfdgsin @11 ESe 1) (4 If we rewrite
state A in a spin coherent basis, we will get the
same distribution. The only difference is that here
in treating it like a classical object, we further
assume that the basis is orthogonal. It is a state
in the form of an exclusive-event HVT (EHVT).

IHVT: A classical object at state pg = HF6D®P57 where
py = HEERPCSC i) (p], 4 1SlRPest )y (]
Here (6,¢) € D = ([0,3)®][0,2m)) U
({%} ® [(),7r))7 which denotes half of all direction
vector 7. This is a state in the form of THVT.

BellHVT: Bell’'s hidden variable theory of Spil’l—%
object[2] uniformly distributed with hidden vari-
able A € [f%,ﬁ : given a specific A\, measure-
ment on Pauli matrix ,67 .S on direction ,67 yields,
sign ()\ + %ﬂz) sign (X), where X = 3, if 8, # 0,
X =8, if 8y # 0,8, = 0 and X = 3, if
B> # 0,8, = 0,8, = 0. Here we changed the ex-
pression accordingly to represent the = direction up
state.

The measurement device has an indicator showing
a positive/negative value if the object is along the
same/opposite direction with its internal direction. One
can control the internal direction of the device. Only
when its direction is parallel or opposite to the object’s
direction, will it be activated. Assume this device is sharp
so that it will not respond to even a slight mis-matching.
The device works on both classical and quantum systems.

Define the activation ratio ) as the ratio between times
when the device is activated out of the total times the
device is used, and define the up-state probability P as
the ratio between the number of positive values out of the
times when the device is activated. We want to check if
the above five states give us different values of () and P
during measurements. First, assume the device is along
the z direction. We see from Table I that from the values

TABLE I. Values of @Q and P with device along the z direction

QM| CM EHVT THVT BellHVT)
Q 1 1 < 1[22] 1 1
P 0.5 0.5 0.5 0.5 0.5

of Q, state EHV'T is different from state QM.

Next we adjust the device to the x direction. We see
from Table II that from the values of @, state CM is dif-
ferent from state QM. However, those measurements do
not differentiate state QM , IHVT and BellHVT. The



TABLE II. Values of @ and P with device along the = direc-
tion

QM| CM EHVT IHVT] BellHVT]
Q 1 0 < 1[22] 1 1
P 1 NA 1 1 1

fact that those two states THVT and BellHV'T both
respect QS-I and QS-II, makes them very good coun-
terexamples of Von Neumann’s proof of impossibility of
HVT[10]. This is exactly made possible by the fact that
operators in those two theories do not obey Eq.(25) the
linear relation between operators even when operators’
averages have those linear relation. Such relation be-
tween operators is too restrictively assumed in Von Neu-
mann’s proof and leads to impossibility[10, 16].

In order to differentiate state QM, IHVT and
BellHVT, we have to perform subsequently repeated
measurements, say first along the z direction and then
along the x direction. In dealing with subsequently re-
peated measurements, we need some rules to determine
the object’s state right after the first measurement. Here
we first assume both CPT-III and QM-IIT hold. In the
following table, we list only values of () and P after the
second measurement. From Table III the values of P

TABLE III. Values of @ and P during the second measure-
ment in a subsequently repeated measurement with device
along the z and then the x direction, assuming both CPT-IIT
and QM-IIT hold

QM CM EHVT THVT BellHVT|
Q- 1 0 0 1 1
P, 0.5 NA NA 1 1

there we find that state THVT and BellHVT are differ-
ent from state QM. That is, we can distinguish a quan-
tum state with Bell’s HVT and our IHVT state by mea-
surements if CPT-I1I/QM-IIT holds. As for state THV'T,
this can be seen from,

D L9 (g,
o= (. pol1).)

(52)

and

tr= =2 (M, (M, po |1, 1))
tr== ((1], po [1).)

As for state BellHV'T, let’s assume A = \* after the first
measurement and that the description of the state stays
the same just with the specific A*, then for the second
measurement, one will get,

P, =

—1.  (53)

1 1
sign ()\* + 251> sign (B.) = sign (X‘ + 2) =1,V\*~.
(54)
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If we are allowed to relax CPT-III then it is always pos-
sible to adjust p; for state ITHVT and adjust the pro-
posed measurement result for state BellHV'T after the
first measurement to make P, = 0.5. We have done so
for state JHVT in CPT-III". And here we can adjust
state BellHV'T to satisfy the requirement. That is if
we get the up/down-state in the first measurement, for

arbitrary second measurement of g - S

sign <)\ + ;5z> sign (X), (55)
where
B:if B, #0
X = ﬂw if Bz = Ovﬁm 7é 0 (56)

By lfﬁz 207593 :0>By 7é0

In that case as we see in Table IV, state THV'T and
BellHVT are indistinguishable from state QM under all
measurements, yet state IHVT and BellHV'T are clas-
sical states and state QM is a quantum state.

TABLE IV. Values of Q and P during the second measure-
ment in a subsequently repeated measurement with device
along z and then z direction, with CPT-III adjusted accord-
ingly

QM| CM EHVT THVT] BellHVT]
Q2 1 0 < 1[22] 1 1
Py 0.5 NA 0.5 0.5 0.5

From the above comparison, we see that when subse-
quently repeated measurements are taken into consider-
ation and CPT-III holds, none of the above four theories
other than QM respects all five QS facts. Only when we
relax CPT-III, both Bell’s HVT and our IHVT provide
alternative theories for quantum systems. Unlike Bell’s
HVT theory, in our IHVT state, we have explicitly writ-
ten down the state in a density matrix form, so it can
be generalized for any objects not only spin—% particles.
In this sense this work can be seen as a development of
Bell’'s HVT. Another thing we would like to point out
is the relation between our IHVT and Bohm’s HVT[16]:
in the following sense, our IHVT provides exactly the
explicit form of a state of Bohm’s HVT.

Originally Bohm’s HVT gave only a classical HVT
based interpretation of the measurement process on a
single direction. Since we are free to choose an arbitrary
direction, we need to generalize the theory a bit. Ba-
sically it says during the measurement process of a spe-
cific direction 7, system evolves according to the following
equation system,

dJ
dt

dJ2
dt

=2y (R — R?) JLJ2

: 57
=2y (R? — R") J2J} o7




, Ji|? , . .
where R' = ||§T||2 and & are those hidden variables. In-

stead of quantum wavefunction ¢ here we take J% as

our fundamental variable since only J} = |(17 | ¥)|* and

JZ = |l | ¥)|* are used in those equations. Then, if we
focus on the state representing this direction only, it can
be written down as

pr=JE 1) (rl + 2[4 ) (4r] (58)

From this point of view, Eq.(57) provides an explana-
tion of the process that the above state in Eq.(58) turns
into |17 ){ 17| or |4 ){ l7| at probability respectively J
or Jo. Now let us consider a separate measurement along
another direction 7. One possible approach is to start
from the quantum wavefunction ¢ again to calculate J;}
and redo the above procedure. However, in this way this
theory never totally eliminates the quantum wavefunc-
tion. There is however another way to recover the right
prediction of measurement on 7 and it eliminates the
quantum wavefunction totally. That is to assume that
the HVT state is in fact,

p =1z ® pr, (59)

while pz is given by Eq.(58) for a specific direction 7
with proper predefined J. We see that this is exactly
state THV'T, our IHVT state. We have shown that we
can make this state agree with the quantum mechanical
state QM on everything.

However, There is a price to do so. This IHVT is
far from a standard CPT. To summarize, IHVT satisfies
QS-I and QS-IT easily but CPT-III needs to be modi-
fied to make it satisfy QS-III and QS-IV. IHVT does
not require contextuality between object and observer
as EHVT does. But both suffer from the same incon-
sistency problem: two different expressions are used to
represent the same state for two different purposes. Fur-
thermore, both discard inherent relation among opera-
tors as in Eq.(25) by treating operators independently or
exclusively. Also CPMS need to be twisted too: a state
resulted from two exclusive procedures are not a prob-
ability summation of the two states respectively corre-
sponding to the two individual procedures. We find that
all of the above has made HVT less understandable than
the usual QM, which has none of above problems and
respects all five QS facts. We would like to conclude that
we have ruled out HVT just from theoretical considera-
tion of a spin—% object.

If one is still willing to pay all the prices mentioned
above, then we are also willing to go a little further to
show that this IHVT conceals something else which one
may not want in a theory of physics. We will apply this
theory onto the description of the entangled singlet state,
which was also used in the discussion of Bell’s inequality.
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VI. CPT FOR TWO-SPIN SYSTEM

The quantum density matrix form of a singlet state is

o= 2 (1) — ) (U= (1), (60)

where |1]) can be regarded as eigenstate on an arbi-
trary direction. For this specific example, QS-I and QS-I1
reads, with vector 77 and 7 on spin 1 and 2 respectively,
on two-spin measurements,

1,

(Sr 7)) = =371+ T2 (61)
and in each measurement, Sz S, = +1; and on single-
spin measurements,

(S7) =0 (62)

and in each measurement Sy = i%. A successful HVT
theory should respect the above two results. For a subse-
quently repeated measurement, HV'T should also give the
correct results depending on the outcome from the first
measurement. Although Bell’s theorem[2] has generally
proven that through local classical theory it is impossible
to achieve this, here, we will construct one such state, in
the form of a classical density matrix, that does, in fact,
achieve this. We will then find out the cost of such a
theory.

To denote a state in IHVT, one example of an equiva-
lent class is used to represent the whole class. We should
check if the following state respects all the QS facts. A
reduced density matrix for two spins on 7, and 75 is

Py, = %ﬂ(wf1l]\?2> <TF1T’F2 | + |\LF1 \1/72> <\LF1 \J/Fg |) )
+1+7+m (H\’I_ﬁ \L’F2> <TF1 \I/FZ | + |\lf771 TF2> <\l,»,“‘1 TFQ D
(63)
The whole density matrix is

o= 1] @pmm (64)

T2

The reduced density matrix satisfies equ(61) and equ(62),
hence QS-I and QS-II. For QS-IIT and QS-IV, although
we will skip the details here, an after-measurement state
can be constructed easily to satisfy the two. Twist-
ing CPMS again solves the problem of QS-V. We have
successfully constructed a classical theory for two-spin
quantum system. It is a classical theory but it violates
Bell’s inequality. As we argued above, we already know
that, due to inconvenience and inconsistency, this theory
should not be preferred. However, we can still ask how
can such a classical theory succeed to give all expected
results from QM? The answer is, it includes non-local (or
contextual) information.

In [23], Bell’s inequality was proven more generally
with only the locality assumption, their equ(2’) uses

p1,2 (A a,b) = p1 (A a) pa (A, D), (65)



where ) is a hidden variable independent of a,b to
express the idea of measurement-independent reality of a
quantum system. Since our IHVT violates Bell’s inequal-
ity, we want to check if it respects the above equation.
Consider the situation where we measure direction a and
b on those two spins respectively.

<.SA'15'2>(a7b) tr (5’1( b)p X))
ZZAab<ab\S() 52 (0) [Aab) f (Aab)
= Zkab (@5 Aab) 5% (b, Aap) f (Aab)

The left hand side can be regarded as

<51S2> Zs $2(a,b,0a0) f Oap) . (67)

From the core of the integral, we see that

s* (a, Aap)

142 (a, by Aap) = 52 (b, Aap) » (68)

or generally,
2 (a,b7 X) = sl <a, X) s2 (b, X) . (69)

Compared with equ(65), equ(69) does look like an ex-
pression of locality, with the difference that a single hid-
den variable is replaced by many hidden variables. How-
ever, it is this replacement that introduces non-local in-
formation, because the particular effective one of X is
Aab, Which does depend on both a and b, directions of
measurements on both spins. During the measurement
process, a sample should be drawn from an effective prob-
ability distribution. And the effective one has to be de-
termined through information from both directions a and
b together. It is as if the system has to know both direc-
tions to make its decision. It is definitely contextual.

We have explicitly shown the place where non-locality
comes into QM. When the classical theory is used to de-
scribe QM, we have to require non-local information. If
this non-locality is unacceptable, then we should rule out
this particular HVT. However, this never means QM in
its own language requires non-local information. This is
a topic which has never been addressed in this paper.

VII. CONCLUSION AND DISCUSSION

We test theories against nothing else but the five QS
facts, which are all established experimental facts not any
kind of presumably reasonable conditions. In a summary,
to find a classical theory respecting all five QS facts, our
conclusion is: first, single variable HVT is incompatible
with non-commutative relation between operators; sec-
ond, even if all operators are commutative, the inher-
ent relation between them has to be abandoned; third,
the EHVT requires contextuality between object and ob-
server; fourth, both EHVT and IHVT suffer from the in-
consistency problem: the expression used to denote the
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state is different with the one used to recover probability;
and last, IHVT is shown to imply contextuality between
the two distant spins of a singlet. We find the price is un-
reasonably high: even after we accept the contextuality,
both CPT-III and CPMS need to be twisted.

Due to this twist, such a classical system could no
longer be broadcast, noticing CPT-III is essential to make
it possible to broadcast a classical system. The possibil-
ity of being broadcast is one key fact in understanding
classical measurement. This makes is impossible to ful-
fill the initial motivation of HVT, which is to understand
better the quantum measurement using the picture of
classical measurement. Therefore, even theoretically, not
depending on the experimental test of Bell’s inequality,
the idea of HVT should be discarded from theories of
quantum systems. Besides our own HVTs we have also
examined Bell’s HVT and Bohm’s HVT and ruled them
out based on subsequently repeated measurements and
validity of CPT-III.

In other words, under reasonable consideration it is
impossible to map a full-structure density matrix to a
diagonal density matrix. With this conclusion in mind,
we may say that although the current language of QM
may not be the ultimate one, any equivalent language
should include the existence of off-diagonal elements of
the density matrix and allow vectors to be transformed
from one basis to another, which is only possible when
operators do not always commute with each other. We
then know quantum measurement is not equal to classi-
cal measurement of a TRCO. Classical measurement of
TRCO creates a broadcast, but quantum measurement
does not.

Finally, we are not saying those are all the possibili-
ties of CPT for QS. From the commutative C*-algebra
point of view, what we have tried here are just two ex-
amples of commutative multiplications between opera-
tors, Sr, Sr, = 0 for the exclusive case and direct product
Sy, ® Sy, for the independent case. There may be other
kinds of algebras among operators. If we assume symme-
try among S operators on all directions, then those two
are the only choices.
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