
Modelling weighted networks using connection count

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 New J. Phys. 8 72

(http://iopscience.iop.org/1367-2630/8/5/072)

Download details:

IP Address: 219.142.142.166

The article was downloaded on 29/07/2011 at 04:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/8/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Modelling weighted networks using connection count

Menghui Li1, Dahui Wang1, Ying Fan1, Zengru Di1

and Jinshan Wu1,2,3

1 Department of Systems Science, School of Management,
Beijing Normal University, Beijing 100875, People’s Republic of China
2 Department of Physics & Astronomy, University of British Columbia,
Vancouver, BC V6T 1Z1, Canada
E-mail: jinshanw@physics.ubc.ca

New Journal of Physics 8 (2006) 72
Received 22 December 2005
Published 25 May 2006
Online at http://www.njp.org/
doi:10.1088/1367-2630/8/5/072

Abstract. Weight-driven and degree-driven evolutionary models for weighted
networks are proposed, with a distance-dependent mechanism to increase the
clustering coefficient. Compared with the well-known BA model there are two
generalizations. Firstly, introducing connection count and converting it into edge
weight, both new and old vertices can attempt to build up connections. When
a new edge is inserted between already connected nodes, the connection count
(and thereby the weight) of the corresponding link is increased. Secondly, the
distribution of local path distance is also used as a reference in the preferential
attachment. The models show some interesting results including scale-free
distributions on degree, vertex weight and edge weight. Even the pure distance-
dependent preferential attachment model shows all these typical behaviours and
a high cluster coefficient. The concepts of reconnecting and converting count as
weight are not new and have been used in empirical studies of weighted networks
but are first used to model weighted networks.
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1. Introduction

Recently more and more empirical and modelling studies on weighted networks have been
appearing. In a binary network, the edges only represent the presence or absence of interactions,
while in a weighted network the weight on the edges provides a natural way to take into account
the interaction strength between vertices. For example, the number of passengers or the number
of flights between any two airports in airport networks [1]–[3], the closeness of any two scientists
in scientific collaboration networks [4, 5], or the reaction rates in metabolic networks [6] are all
crucial in the characterization of the corresponding networks.

Empirical research reveals that usually a weighted network exhibits power-law distributions
for the degree, the vertex weight and the link weight, and a high clustering coefficient.Also, some
of the empirical study show linear and nonlinear correlation between vertex weight and degree,
w = k−η [2]. Besides the investigation on the statistical properties, some recent advances have
been made to study the evolution of weighted networks. There are several ways to assign the
weight to the link in these models. Some previous approaches have transferred some quantities
from non-weighted networks into the weight of the edges [7]. They are usually related to the
degree or other intrinsic quantities of the nodes. In some models, weights on edges are generated
from some a priori distribution [8]–[10]. The link weight in all the above models does not change
with the evolution of the networks. Recently Barrat et al has proposed a weight-driven model
[11] with evolving weights. In [12], Bianconi has also presented a model with evolving weights
by introducing an additional quantity, the fitness of vertices and edges.

Although the models [11, 12] mentioned above couple the weight with network evolution,
they both require some extra mechanism for the evolution of edge weights, for example, a
� increase and its distribution over linked edges in [11]. From the empirical study, however,
connection count, defined as the number of occurrences of events represented by the connection
between two vertices, is a natural measurement of the relation between vertices. The dynamical
process of weight in Barrat’s model [11] justified from the background of airport networks,
evolves independently on connection count. However, quite a lot of weighted networks are
projections of bipartite networks, such as collaboration networks of actors or scientists and
networks of emails. As we can see there, weight usually relates closely to this connection count
[2, 4, 5]. In our empirical investigation on scientific collaboration networks the connection
count is converted into weight, and it gives a good measure of the relation between scientists.
Although different authors may use different expressions [2, 4, 5] to convert connection count into
weight, every one is a projection from a bipartite (scientists and papers) graph onto a one-mode
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weighted network (of scientists only) [13]. For example, the connection between two scientists
via different papers in the original bipartite network can be naturally regarded as a repeated
connection between them, therefore it gives us connection counts. From this point of view, for
the one-mode network projected from a bipartite network, the idea of converting connection
count into weight seems quite general. Furthermore, the models constructed in this way do not
require any extra dynamical process of weight.

For binary networks, the preferential attachment introduced in the BA model [14] is believed
to be a good mechanism to generate a power-law distribution of degree. It is a natural and simple
way to incorporate the above relation between connection count and weight into modelling
weighted networks. In order to realize this, we add two new ingredients into the degree-driven
BA model. Firstly, there is activation of old vertices, which has been used for example in [17,
20, 21]. Secondly, we can convert connection count into weight, which has already been used in
empirical study [2, 4, 5], but is for the first time applied here on network models. Furthermore, if
it gives good results in the degree-driven model, it will be also interesting to apply this idea to the
weight-driven model. These two models compose the first part of this work. In the second part, we
also introduce a distance-dependent preferential attachment (DDPA) mechanism, which helps
to increase the clustering coefficient of the networks. The original BA model and Barrat’s model
result in quite low clustering coefficient. Some evolutionary models do give high clustering
coefficient but have additional structures or quantities [15]–[19]. In our DDPA model, new
connections are added into the network according to the distribution of local path distances. In
the final part, we will show that a pure DDPA model with second-nearest neighbours gives all
those scale-free distributions together with a high clustering coefficient.

2. The model

An N-vertex weighted network is defined by an N × N matrix, (wij)N×N , which represents the
weight on the link between vertices i and j. Weight used here is in the sense of similarity, which
means the larger the weight, the closer the two ends nodes are, for example, wlm = 0 indicates
no relation between vertex l and m. When the link between vertices i, j represents an event
happening between the vertices, the number of occurrences of such an event may be defined as
the connection count Tij. Therefore such a weighted network can also be characterized by an
N × N matrix (Tij)N×N . The link weight wij is related to the connection count Tij between vertex
i and j, by

wij = f(Tij), (1)

such as the tanh function wij = tanh(αTij) we used in [5], or just the linear relation wij = Tij

used in [2, 4]. The weight defined in this way is a similarity weight, which means the larger the
weight the closer the relation between the vertices. Based on this similarity weight, similarity
distance will be used to measure the distance between vertices in the sense of similarity. This is
different from the usual meaning of distance in a binary network. For example the calculation
of such a distance between two vertices 1, 3 along a path connected by two edges (with w12 and
w23 respectively) is l13 = 1/[(1/w12) + (1/w23)], which is smaller than both w12 and w23 (see
also [5]). Then to find the shortest path is actually to find the path with maximum similarity
distance.
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The evolution is given as follows. Starting from a fully connected n0 initial network, with
initial times Tij = 1 (and initial weight wij = f (1)), at every time step,

1. One new vertex is added into this network, and l old vertices are randomly chosen from the
existing network.

2. Every one (denoted as vertex n) of these (l + 1) vertices will build up m connections.
The probability for every link from n connecting onto vertex i is given by

∏

n→i

= (1 − p)
ki∑
j kj

+ (p − δ)
wi∑
j wj

+ δ
lni∑

j∈∂d
n
lnj

, (2)

where ki is the degree of vertex i, wi = ∑
j wji is the ‘onto’ vertex weight of vertex i, lni is

the similarity distance from n to i, and ∂d
n is the set of nodes within the dth neighbours of

vertex n. For example, ∂1
n is the set of nearest neighbours, ∂2

n includes both the nearest and
the second-nearest neighbours, and so on. The first two are degree-based and weight-based
preferential attachment as usual. The last term means when the old vertices are activated,
they will prefer to connect their neighbours rather than remote vertices.

3. After an end node i∗ is chosen from all vertices over the existing network by the probability
above in equation (2), the connection count between vertex n and i∗ increases by one,

Tni∗(t + 1) = Tni∗(t) + 1. (3)

4. The weight of the edges changes as

wni∗(t + 1) = f(Tni∗(t + 1)). (4)

Although our general model defined above can even be applied onto directed networks, we
assume that wij = wji in the following analysis. A general form of f(Tij) can be used to
convert connection count into weight. We mostly consider the special case

wij = Tij, (5)

and in one simulation, we use the tanh function,

wij = tanh(αTij). (6)

3. Pure weight-driven and pure degree-driven models

Let us first consider the pure weight-driven case with p = 1 and δ = 0. In some sense, this means
the scientists choose their cooperators according to the weight, instead of focusing on degree. In
fact, the same idea of this weight-driven mechanism was used in Barrat’s paper [11]. The only
difference between Barrat’s model and this one is the evolution of weight. In Barrat’s model,
an increment of weight distributes among the neighbours of the chosen vertex. In our model, it
evolves through the connection count. Analytical results for the vertex weight distribution can
be calculated for this case if we use the linear relation between weight and connection count,
equation (5). Vertex weight or strength is

wi =
∑

j

wji =
∑

j

αTji. (7)
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Figure 1. For a pure weight-driven model, analytical results of equation (10)
are compared with the computer simulations under different l s. The dashed
line is from the BA model, where γ = 3. Later, unless mentioned otherwise,
all the simulation results are the average of 10 runs under the parameters: m = 5,

n0 = 10, l = 5, N = 10 000.

The rate equation for the evolution of the average number of vertices with weight w at time t is

N(w, t + 1) = m(1 + l)
(w − 1)N(w − 1, t) − wN(w, t)∑

w wN(w, t)
− lN(w, t)

N

+
lN(w − m, t)

N
+ N(w, t) + δw,m, (8)

where
∑

w wN(w, t − 1) = 2E0 + 2m(1 + l)t is the total weight and N = n0 + t is the size of
system at time t with initial E0 edges and n0 nodes. The first term reflects the preferential
attachment to select the other end of the link, while the following two terms correspond to
the random selection of l old vertices. When E0 and n0 are much smaller than t the size of the
network N is approximately the time step t. Then the rate equation (8) can be written as

(t + 1)p(w, t + 1) = tp(w, t) + 1
2[(w − 1)p(w − 1, t) − wp(w, t)]

−lp(w, t) + lp(w − m, t) + δw,m, (9)

where p(w, t) � N(w, t)/t is the density of vertices with strength w at time t. When t is large
enough, we get the asymptotic distribution of vertex weight,

p(w) ∝ (w + 2lm)−3. (10)

Comparison of the analytical results of equation (10) with computer simulations in figure 1
shows they are very consistent with each other. We can find that the lower end of vertex weight is
obviously affected by the parameter l, and departs from a power-law, while the upper end is still
distributed as a power-law. From simulations of pure weight-driven model, figure 2(a) shows the
typical behaviour of degree and vertex weight distributions. The distribution of link weight also
obeys a power law as shown in figure 3. A logarithmic binning will smooth the noisy tail coming
from finite size simulation; however such linear frequency counting plots are good enough to see
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Figure 2. Degree and vertex weight distributions from (a) the pure weight-driven
model and (b) the pure degree-driven model. Both show power-law distributions
with almost the same exponent. The insets are the correlation plots between vertex
weight and vertex degree, with w ∼ kη, η = 1.22 (a) and η = 1.19 (b).

Figure 3. The link weight distribution from the pure weight-driven model and
pure degree-driven model, compared with the empirical results of Newman’s data
and econophysics network.

the general distribution form. From the inset diagrams of the figures, we can see there is a very
strong correlation between vertex weight and vertex degree, but not linear. It can be described
by w ∼ kη, as we did in the insets of the figures. This is an indication that the information stored
in those weighted networks cannot be fully covered by the corresponding binary networks. Such
correlation has been observed by empirical works, for example η = 1.5 for a world-wide airport
network in [2]. For the correlation analysis, an average is taken for the weights of the vertices
with the same degree.
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Figure 4. Nonlinear relation of equation (6) with α = 0.1 between connection
count and weight used in the weight-driven model. Typical behaviours do not
show a large difference with the linear weight case. The main plots are degree
and weight distributions, the top-right inset is their correlation with η = 1.17, and
the bottom-left inset is the distribution of edge weight.

In the case of the pure degree-driven model, our model is similar with BA model, except
now the old vertices can also be activated [17, 20, 21] and connection can be repeated. The typical
distributions of degree and vertex weight from simulations of the degree-driven model are shown
in figure 2(b), and edge weight distribution is shown in figure 3. There is another important reason
driving us to consider both degree-referred and weight-referred preferential attachment. We want
to investigate the structural role of weight. Should it be a fundamental quantity at the same level
of connection, or is it a higher level structure, which can be defined by fundamental ones? The
difference between those two models, and the conclusion as to which one behaves better, reflect
the answer to the question: whether the weight of the edge is as fundamental as connection of the
edge. However, as far as we can see from figure 2, both these models show typical behaviours
even with the same exponent. In the weight-driven model, we also tried the tanh nonlinear weight,
equation (6), to couple connection count to weight. The results in figure 4 do not show a large
difference with the case of linear weight above.

4. Distance-dependent preferential attachment

According to the mechanism represented by the δ term in equation (2), for a given start vertex,
the probability to attach to an end vertex is proportional to the similarity distance between them.
Therefore, when a connection is built up from a new active vertex, the similarity distance to every
existing vertex is 0, so an end vertex is randomly chosen. When a connection is built up from a
vertex already connected to the network, the existing connections within the ∂d neighbours form
a distribution of the similarity distance. Then the probability to attach to a vertex is higher if
it has a closer relation (larger similarity distance) with the active one. This term can act as an
additional mechanism to the other two mechanisms, or it can drive the network evolution alone.
First, we keep the degree term and the δ term in our model so that p = δ ∈ (0, 1), and let ∂d

n = ∂2
n
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Figure 5. Clustering coefficient when the δ mechanism is added onto the pure
degree-driven model, where the first line above is the one from the pure δ

mechanism. The plots of weight/degree distributions have been omitted from
those mixing models because they are very similar with the above ones from pure
models.

Figure 6. The model with pure δ mechanism demonstrates all the typical power-
law distributions with a high clustering coefficient as shown in the top curve in
figure 5. The top-right inset is the correlation between vertex weight and vertex
degree, with η = 1.19. The bottom-left inset is the distribution of edge weight.

in equation (2). In figure 5, simulation shows that this δ mechanism significantly increases the
clustering coefficient. The distribution of degree and weight still follow a power law. Similar
results are obtained when this δ term is added into the weight-driven model. In figure 6, we
set p = δ = 1 to keep the δ term only and with also d = 2. The model is now a pure DDPA
model. The simulation shows that even this case demonstrates all the typical properties and a
high clustering coefficient.
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5. Conclusion

In this paper, we presented evolutionary models for weighted networks which integrate the
contributions from both new and old vertices. The three mechanisms: degree-driven, weight-
driven and distance-dependent preferential attachment are discussed and compared. Weight has
been assigned to each link according to the connection count of the link, which increases when
the connection is repeated, so the weight of the link changes as the network evolves. Including the
behaviours from the old vertices and recording the connection counts and converting them into
weight, are the essential ideas in this work. The way to incorporate local distance into network
evolution through the δ-mechanism is also one highlight of this work. Although it is not a new
idea to convert connection counts into edge weight, it is the first time it has been the key point in
network modelling. Because of this link between weight and connection count, we do not need
another mechanism for the evolution of weights. However, the emergence of typical results from
our models in an agreement with empirical studies makes this simple idea valuable.
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