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Abstract

In this paper, we introduce a framework of new mathematical representation of
Game Theory, including static classical game and static quantum game. The idea
is to find a set of base vectors in strategy space and to define their inner product
so as to form them as a Hilbert space, and then form a Hilbert space of system
state. Basic ideas and formulas in Game Theory have been reexpressed in such a
space of system state. This space provides more possible strategies than traditional
classical game and quantum game. All the games have been unified in the new
representation and their relation has been discussed. It seems that if the quantized
classical game has some independent meaning other than traditional classical, a
payoff matrix with non-zero off-diagonal elements is required. On the other hand,
when such new representation is applied onto quantum game, the payoff matrix
gives non-zero off-diagonal elements. Also in the new representation of quantum
games, a set of base vectors are naturally given from the quantum strategy (oper-
ator) space. This gives a kind of support for our approach in classical game. Ideas
and technics from Statistical Physics can be easily incorporated into Game Theory
through such a representation. This incorporation gives an endogenous method for
refinement of Equilibrium State and some hits to simplify the calculation of Equi-
librium State. Kinetics Equation and thermal equilibrium has been introduced
as an efficient way to calculate the Equilibrium State. Although we have gotten
some successful experience on some trivially cases, the progress of such a dynamical
equation for the general case is still waiting for more exploration.

Key Words: Game Theory, Quantum Game Theory, Quantum Mechanics, Statisti-
cal Physics, Kinetics Equation
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1 Introduction

Game Theory[1, 2] is a subject used to predict the strategy of all players in a game. The
simplest game is static and non-cooperative game, which describe by payoff function
G, a mapping from strategy space S1 × S2 × · · ·SN to N-dimension real space RN . If
a mixture strategy is permit for all players, such as P 1, P 2, · · · , PN , in which P i is a
probability distribution on strategy set Si, Nash Equilibrium Theorem proves that there
is always some mixture-strategy equilibrium point, on which no player has the willing
to make an independent change. Therefor, such equilibrium points can be regarded as
a converged points (or at least fixed point) of the system, then as the end state of all
players.

On the other hand, Quantum Game Theory[3, 4] has been proposed as a quan-
tum version of Game Theory. A typical two-player quantum game is defined as Γ =
(H, ρ0, SA, SB , PA, PB), in which H is the Hilbert space of state of one quantum object,
like a photon or electron. Such a state of quantum object plays an important role in
Quantum Game Theory. The quantum strategy set SA or SB usually is defined as a set
of unitary operator on state space H, or we say on the quantum object. Because quan-
tum strategy space is usually larger than the corresponding classical strategy space,
one can make use of such advantage of quantum strategy to make money over classical
player.

However, both of Classical Game Theory and Quantum Game Theory are expressed
in single player strategy space, so the payoff function is a (0, N) tensor Gi

(

s1, s2, . . . , sN
)

,
mapping a combination of N single-player strategies onto a real number. On the con-
trary, in Quantum Statistical Mechanics, a matrix form of Hamiltonian H is used
in a any-particle case, and the form of density matrix of equilibrium state is always
ρ = e−βH . So a system-level description will unify our formulas for N -player game.
And then maybe improve our understanding and calculation.

Starting from such an idea, in this paper, we construct a systematical way to reex-
press everything into system-level description, including system state and its space, pay-
off matrix on system space, and reduced single-player payoff matrix. Then Canonical
Quantum Ensemble distribution is used to describe system equilibrium state. So ideas
and technics from Statistical Physics can be easily applied into Game Theory. Such
application implies a probability that a Kinetics Equation can be used to describe an
evolution that a system ends at the equilibrium state starting from an arbitrary distri-
bution. Because the traditional Game Theory only cares about the macro-equilibrium
state, the Kinetics Equation approach is just pseudo-dynamical equation leading to the
equilibrium state. The dynamical process itself might be meaningless.

However, besides providing a new pseudo-dynamical approach, the distribution
function description has its own meaning. In Game Theory, maybe general for all
economical subjects, usually it’s supposed that even the difference between two choices
is very small, the high-value one is chosen. This is unnatural when the difference is
smaller than the resolution of human decision. Therefor, we use a distribution function
to replace the maximum-point solution. This means player i will choose strategy si

µ
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with probability eβEi(si
µ), even there are another strategy can make more money. Here,

β is the meaning of average resolution level, or in Statistical Physics, the average noise
level. Unfortunately, although the ensemble description is the second topic of this pa-
per, only some special case study has been investigated. A general form for any game
is still waiting for more exploration.

Section §2 constructs the new representation for classical and quantum game. Sec-
tion §3 use ensemble distribution and pseudo-dynamical approach to study the equi-
librium state in this new representation. Discussion of relation between our new repre-
sentation and quantum, and classical game is included in section §2. A lot of questions
are pointed out in the discussion section (§4). Section §5 is a short summary of the
conclusions we have reached.

2 Mathematical Structure: Strategy Space, State Density

Matrix and Payoff Matrix

Strategy set can be continuous and discrete, and this will effect the mathematical form
of all variables, such as the state of player i is p(si) or pi

µδ(si − si
µ), and G will be

integrations or matrixes. In order to compare with the Mathematical form of Quan-
tum Mechanics and point out the similarity, and to unify Classical Game Theory and
Quantum Game Theory, here we use the discrete strategy, although the corresponding
transformation of all ideas and formulas is quite straightforward. Most of our formulas

and results can be generalized into N -player and
(

∏N
i=1 Li

)

-strategy game, so for sim-

plicity of expressions, at most time, a 2-player and (L1 × L2)-strategy game is used as
our object.

2.1 The new representation of static classical game

Now, for a N -player game, we suppose the strategy space of player i is Si =
{

si
1, s

i
2, · · · , s

i
Li

}

.

The state of player i is
∣

∣P i
〉

≡
(

pi
1, p

i
2, · · · , p

i
Li

)

and
∑Li

µ=1 pi
µ = 1. The payoff function

of player i is a (0, N)-tensor — a N -linear operator,

Ei(P 1, P 2, . . . , PN ) = Gi
(∣

∣P 1
〉

,
∣

∣P 2
〉

, · · · ,
∣

∣PN
〉)

. (1)

Specially, for a 2-player game, Gi can be written as a matrix ((0, 2)-tensor) so that

Ei(P 1, P 2) =
〈

P 1
∣

∣Gi
∣

∣P 2
〉

, (2)

in which Gi is L1 × L2 matrix, not necessary a square one. So a classical game is

ΓC =
({

Si
}

,
{

Gi
})

, (3)

where Si is a strategy space for single player i and Gi is a (0, N)-tensor. A general
vector in Si can be defined as

∣

∣P i
〉

=

Li
∑

µ=1

pi
µ

∣

∣si
µ

〉

, (4)
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in which
{

si
µ

}

is the base vector set of strategy space Si. Or in traditional language,
it’s a set of all the pure strategies of player i.

Inspired by the application of Hilbert Space in Quantum Mechanics, now we intro-
duce two ideas into Game Theory. First, to redefine the strategy space of single player
as a Hilbert Space. Second, to use a system state to replace the single player state.
Then, at the same time, a new form of payoff function is required to be equivalently
defined on the system state.

A single-player state vector
∣

∣P i
〉

is written in a new form as

ρi =

Li
∑

µ=1

pi
µ

∣

∣si
µ

〉 〈

si
µ

∣

∣ . (5)

It’s density matrix form of a mixture state, because a classical strategy of player i is
to use strategy si

µ with probability pi
µ. The difference between equ(4) and equ(5) can

be regarded as just to replace
∣

∣si
µ

〉

with
∣

∣si
µ

〉 〈

si
µ

∣

∣. The reason of such replacement
will be clear when we do it on quantum game. Actually, using density matrix to
describe mixture state is a approach in Quantum Mechanics. The first advantage of
such replacement is that in the later way, it’s easier to express a system state. A system
state of all players is defined as

ρs =
N
∏

i=1

ρi. (6)

A typical form of system state of a 2-player (player 1 and player 2) and 2-strategy
(strategy (α, β) and strategy (µ, ν)) classical game looks like

ρs = p1
αp2

µ |αµ〉 〈αµ| + p1
αp2

ν |αν〉 〈αν| + p1
βp2

µ |βµ〉 〈βµ| + p1
βp2

ν |βν〉 〈βν| . (7)

In fact, the base vector set of Hilbert space of system state of N players can be defined
as direct product of single player base vector as

∣

∣S~µ

〉

:=
∣

∣s1
α, s2

β, . . . , sN
γ

〉

=

N
∏

i=1

∣

∣si
µ

〉

. (8)

Then from equ(5) and equ(6), it can be proved that a system state have the form as

ρs =
∑

~µ

P̃S~µ

∣

∣S~µ

〉 〈

S~µ

∣

∣ , (9)

in which

P̃S~µ
=

N
∏

i=1

pi
µ. (10)

One can compare this general form with the specific one of 2 × 2 game, equ(7). Some-
times, we neglect the subindex and denote

∣

∣S~µ

〉

as |S〉. In such situation, we should
notice that a capital S denote a general system base vector.
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The second advantage of such replacement is that it provide a probability to use
pure strategy other than the traditional classical mixture strategy. We will discuss this
in section §2.3. Now we try to transform payoff function Gi into system-level form
while the invariant condition is equ(1). In a density matrix form, the formula used to
calculate the payoff is

Ei(ρs) = Tr(ρsH i) =
∑

S

〈S| ρsH i |S〉 , (11)

The solution of equ(1) and equ(11) gives the relation between H i and Gi. Since those
two equations should give the same value for any state, we can choose the system
state as a pure strategy, or in our language, the base vector of system state. Let’s
denote |S0〉 =

∣

∣s1
0, s

2
0, . . . , s

N
0

〉

, which means every player choose a pure strategy si
0,

then P i
0 = δsisi

0
. Then equ(11) give us

Ei(|S0〉 〈S0|) =
∑

S

〈S|S0〉 〈S0|H
i |S〉 = 〈S0|H

i |S0〉

So
〈S0|H

i |S0〉 = Gi
(∣

∣s1
0

〉

,
∣

∣s2
0

〉

, · · · ,
∣

∣sN
0

〉)

. (12)

The diagonal elements of H i can be calculated explicitly. And for our general system
density matrix as equ(9), only the diagonal terms effect the payoff value Ei, all others
can defined as zero. H i of a 2-player game is

H i =
∑

αβ,µν

Gi
αµδαβδµν |α, µ〉 〈β, ν| . (13)

This means H i is diagonal matrix.

2.2 Prisoner’s Dilemma as an example

Before we continue our further discussion, let’s use one example to present our abstract
Mathematics and to compare the traditional and new from of state vector and payoff
function. The traditional payoff function of Prisoner’s Dilemma is

Cooperate Defect

Cooperate −2,−2 −5, 0

Defect 0,−5 −4,−4

Then

G1 =

[

−2 −5
0 −4

]

, G2 =

[

−2 0
−5 −4

]

.

The traditional state vectors are

∣

∣P 1
〉old

= p1
c |C〉 + p1

d |D〉 ,
∣

∣P 2
〉old

= p2
c |C〉 + p2

d |D〉 .
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By substituting the above two equations into equ(2), we get

E1 =
[

p1
c p1

d

]

[

−2 −5
0 −4

] [

p2
c

p2
d

]

= −2p1
cp

2
c − 5p1

cp
2
d + 0 · p1

dp
2
c − 4p1

dp
2
d

(14)

The new notation of state of player 1 is

ρ1 = p1
c |C〉 〈C| + p1

d |D〉 〈D| .

The new notation of system state is

ρs = p1
cp

2
c |CC〉 〈CC| + p1

cp
2
d |CD〉 〈CD| + p1

dp
2
c |DC〉 〈DC| + p1

dp
2
d |DD〉 〈DD| ,

or in matrix form,

ρs =









p1
cp

2
c 0 0 0

0 p1
cp

2
d 0 0

0 0 p1
dp

2
c 0

0 0 0 p1
dp

2
d









.

Then from equ(13), we know the new payoff function,

H1 =









−2 0 0 0
0 −5 0 0
0 0 0 0
0 0 0 −4









,H2 =









−2 0 0 0
0 0 0 0
0 0 −5 0
0 0 0 −4









.

We can check it by substituting into equ(11) as,

E1 = Tr
(

ρsH1
)

= −2p1
cp

2
c − 5p1

cp
2
d + 0 · p1

dp
2
c − 4p1

dp
2
d, (15)

which is the same value with equ(14). So the new representation includes all the
information in the traditional notation, however, more complex it seems. But such
complexity brings some other benefit including Equilibrium State calculation and gen-
eralization into Quantized Game Theory.

2.3 Quantized classical game: expanded strategy space

Till now, since the classical strategy is a mixture strategy of the base vector (strategy),
we always use density matrix to represent a single player state or a system state, such
as in equ(5) and equ(6). Now we ask the question that what’s the pure state of strategy
(but other than the classical pure strategy) means in Game Theory? A pure strategy
vector of player i in our representation is

∣

∣P i
〉pure

=

Li
∑

µ

xi
µ |µ〉 , (16)
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Therefor, the density matrix of such a pure state is

ρi,pure =
∣

∣P i
〉pure 〈

P i
∣

∣

pure
=

Li,Li
∑

µν

xi
µx̄i

ν |µ〉 〈ν| , (17)

The density matrix of a pure state has off-diagonal elements while the classical mixture
density matrix has only the diagonal elements. It seems that pure strategies expand the
strategy space. Whether it has significant result in Game Theory or not? Comparing
equ(17) with equ(5), if we suppose

∣

∣xi
µ

∣

∣

2
= xi

µx̄i
µ = pi

µ, (18)

that every diagonal element of pure density equals to corresponding one of mixture
density matrix, then those two states will have similar meaning. Let’s use the Prisoner’s
Dilemma as an example again to check if they will give different payoff value. Although
we still can follow the calculation of mixture state by density matrix method as in
equ(11), there is a much simpler formula for pure state calculation,

Ei,pure = 〈S|H i |S〉 . (19)

Where |S〉 is a pure state vector defined direct product of single player state as

|S〉 =
∣

∣P 1
〉 ∣

∣P 2
〉

. . .
∣

∣PN
〉

:=
∣

∣P 1, P 2, . . . , PN
〉

. (20)

Then for Prisoner’s Dilemma, the system state vector is

|S〉 = x1
cx

2
c |CC〉+ x1

cx
2
d |CD〉+ x1

dx
2
c |DC〉+ x1

dx
2
d |DD〉 .

Combined with new payoff matrix H1,

Ei,pure =
[

x̄1
c x̄

2
c x̄1

c x̄
2
d x̄1

dx̄
2
c x̄1

dx̄
2
d

]









−2 0 0 0
0 −5 0 0
0 0 0 0
0 0 0 −4

















x1
cx

2
c

x1
cx

2
d

x1
dx

2
c

x1
dx

2
d









= −2p1
cp

2
c − 5p1

cp
2
d + 0 · p1

dp
2
c − 4p1

dp
2
d

the same value as equ(14) and equ(15).

Pure state ρs,pure equals to the diagonal term plus some off-diagonal elements. The
same payoff value implies that in our situation, only the diagonal term makes sense. In
fact, generally, it’s because of the diagonal property of H i . From equ(11) and equ(12),
we know

Ei =
∑

S

〈S| ρH i |S〉 =
∑

S

〈S| ρ |S〉H i
ss =

∑

S

ρssH
i
ss. (21)

It means that even ρs,pure has off-diagonal elements, only the diagonal parts effect the
payoff value. In one word, the mathematical form of vectors in Hilbert space, or the
equivalent density matrix form, brings nothing new into Game Theory but an equivalent
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mathematical representation. System state can be a pure state or a mixture state, but
since the payoff matrix is diagonal, they make no difference. The Quantization of Game
Theory is possible only when both density matrix and payoff matrix have off-diagonal

elements. Although density matrix ρs can have the off-diagonal terms, the relation of
equ(12) between the new payoff matrix and the traditional one guarantees that H i can
only have the diagonal term. So the quantization condition has no classical meaning
in Game Theory.

Now the question is if we quantize it anyway, what’s the meaning? Is it possible
to find any real world objects for such a theory? If we find such an object, does the
relative phase in state vector play any roles in such situation? And further more, the
vector space gives us the freedom to choose our base vectors, does such transformation
play any roles? The expanded strategy space provides another class of possible state.
In the mixture classical density matrix, a system density matrix ia always has the form
as equ(9), which is a direct product of all single players. If pure state is permitted,
a general system density matrix may not be a direct product, but an entangled state
of all single players. Does such an entangled density matrix have significant effect on
Game Theory?

At the last of this section, lets come back to question of the meaning of the off-
diagonal term of payoff matrix H i by referring to an example. What’s the meaning of
ǫ in the payoff matrix below?

H1 =









−2 0 0 ǫ1

0 −5 0 0
0 0 0 0
ǫ2 0 0 −4









,H2 =









−2 0 0 ǫ2

0 0 0 0
0 0 −5 0
ǫ1 0 0 −4









. (22)

2.4 The new representation of static quantum game, with quantum

penny flip game as an example

The representation of classical game above strongly depends on the base vectors of
strategy set. But in classical game, such base vectors are predetermined and artificial.
They are just the original discrete basic classical strategies. No inner product has
been predefined between them before our construction of the new representation. Now
we turn to Quantum Game Theory, and fortunately it will provide us a very natural
explanation of our base vectors.

The proposed and developing Quantum Game Theory is different with our Quan-
tized Classical Game Theory. While our approach is a representation, the Quantum
Game Theory is a quantum version of Game Theory. It use the idea of Game Theory,
but all operations (strategies) and the object of such operations are from quantum
world[5]. A typical 2-player quantum game is defined by

Γ = (H, ρ0, SA, SB , PA, PB) , (23)

8



in which H is the Hilbert space of the state of a quantum object, ρ0 is the initial state
of such an object, SA, SB is player A or B’s set of quantum operators acting on H.
And PA, PB are their payoff functions.

Using well-known Quantum Penny Flip Game[6] as an example, spin of an electron
is used as penny, so the base vectors of H are |U〉 , |D〉. The initial state is choose as
ρ0 = |U〉 〈U |. The classical operators are to flip the penny or not, so they are

N =

[

1 0
0 1

]

, F =

[

0 1
1 0

]

.

The quantum operator can be a general unitary operator

Û (θ, φ) =

[

cos θ sin θe−iφ

sin θeiφ − cos θ

]

.

The payoff function is usually defined as

EA = T̄ r (ρe) = −EB ,

in which T̄ r is a notation of anti-trace on a 2 × 2 matrix, the difference between first
diagonal elements and the last diagonal elements. In order to express EB as similar
form, we denote T̄ rB = −T̄ r, and rename T̄ r = T̄ rA, then Ei = T̄ ri (ρe).

Considering the relation between classical game and quantum game, we redefined
quantum game with a slightly difference with the definition equ(23) as

Γ =
(

H, ρ0,
(

S
q
A, S

q
B

)

, (Sc
A, Sc

B) , PA, PB

)

, (24)

in which S
q
i is the set of quantum operators while Sc

i is the set of classical operators,
usually Sc

i is a subset of S
q
i , but not necessary.

2.4.1 Base vectors and strategy space

Now let’s use our new mathematical representation to reexpress the Quantum Game
Theory. Because Quantum Game Theory is constructed on the basis of quantum state
of a quantum object, H, it provide a set of natural base vector of strategy space. For
quantum penny flip game, all strategy are operators with the form of

A = Auu |U〉 〈U | + Aud |U〉 〈D| + Adu |D〉 〈U | + Add |D〉 〈D| . (25)

So the base vectors are HH = {|U〉 〈U | , |U〉 〈D| , |D〉 〈U | , |D〉 〈D|}. Furthermore, if we
define the inner product of operator as

〈A|B〉 = Tr
(

A†B
)

, (26)

HH is a complete orthogonal base vector set for all quantum operators. Then the
operators can be regarded as vectors in Hilbert space, a Hilbert space of operator,
which we denote as HH = {|UU〉 , |UD〉 , |DU〉 , |DD〉}.

9



The classical strategies are

|N c〉 = |UU〉 + |DD〉 , |F c〉 = |UD〉 + |DU〉 . (27)

In order to form another complete orthogonal base set, we need to define other two
base vectors as

|N q〉 = |UU〉 − |DD〉 , |F q〉 = −i |UD〉 + i |DU〉 . (28)

Then operator space can also be expressed by HH = {|N c〉 , |F c〉 , |N q〉 |F q〉}, while the
classical strategy is Hc = {|N c〉 , |F c〉}. |UU〉 is the operator to turn the |U〉 into |U〉,
no definition when the initial state is |D〉. Because a meaningful operator should give
the end result for starting state both as |U〉 and |D〉, operators {|N c〉 , |F c〉 , |N q〉 , |F q〉}
are better than {|UU〉 , |UD〉 , |DU〉 , |DD〉} in this. Another advantage is that all the
base vector are unitary and hermitian operator. And it’s easy to prove that under our
definition of inner product, the matrix form of 〈A| is just A†.

Applying our representation onto this quantum penny flip game, the system state
is

ρs = ρ1 × ρ2. (29)

The single-player state coming from classical sub strategy space is

ρi
c =

(

pi
nc |N

c〉 〈N c| + pi
fc |F

c〉 〈F c|
)

. (30)

If we quantize it anyway as we did in section §2.3 that in a pure state of quantized
classical game, The single-player state is

ρi
q = xi

ncx̄
i
nc |N

c〉 〈N c| + xi
ncx̄

i
fc |N

c〉 〈F c| + xi
fcx̄

i
nc |F

c〉 〈N c| + xi
fcx̄

i
fc |F

c〉 〈F c| (31)

Then ρs
q will have off-diagonal term, while ρs

c only has the diagonal term. Now, applying
our representation onto quantum strategy space of this penny flip game, The single-
player state is

ρi
Q =

∑

µ,ν

xi
µx̄i

ν |µ〉 〈ν| . (32)

Here µ, ν can be any one of {|F c〉 , |N c〉 , |F q〉 , |N q〉}. Next step, we allow our strategy
can be mixture state in HH. The single-player state of a general mixture strategy will
be

ρi
Q,q =

∑

µ

pi
µ |µ〉 〈µ| , (33)

where |µ〉 may or may not equal to {|N c〉 , |F c〉 , |N q〉 , |F q〉}. This means ρi
Q,q is mixture

state but maybe diagonal in other set of base vectors. A more general system state
can be constructed in the quantum strategy space HH by destroying equ(29). We ever
mentioned in the last part of section §2.3 that density matrix of a general state is not
required to be a direct product to density matrix of every single player. But still, the
meaning of such state is not clear here.
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In the later discussion, we name equ(30), equ(31), equ(32) and equ(33) as classical
game (CG), quantized classical game (QCG), quantum game (QG) and quantized quan-
tum game (QQG), respectively. And in the classical game, when the system density
matrix is not a direct product, we call the game as entangled classical game (ECG),
while for quantum case, entangled quantum game (EQG). The strategy space of all
these games have the relation that

CG ⊆ QCG ⊆ ECG ⊆ QG ⊆ QQG ⊆ EQG. (34)

The relation is ‘⊆’ not ‘⊂’ because it’s possible that the later has no independent
meaning other than the former although the later has a larger strategy space.

2.4.2 The payoff matrix and its non-zero off-diagonal elements

Now all games have been unified in our mathematical representation. Everyone has its
own strategy space and base strategy vectors. In order to finish presenting our repre-
sentation, we need to calculate the new payoff function H i. Let’s still use the quantum
penny flip game as an example. In Quantum Game, because the non-commutative
relation between operators (base vectors), the order of acting effects the results. On
the contrary, in classical game, usually the base vectors are commutative, so the order
of acting doesn’t matter. We can see this by

[N c, F c] = 0,

but

[N q, F q] =

[

0 −2i
−2i 0

]

= −2iF c 6= 0.

We define the order is (1, 2, 1, 2, . . .), then the original payoff function Gi is defined to
take the value of

〈

Û1
∣

∣

∣
Gi
∣

∣

∣
Û2
〉

= Ei(Û1, Û2) = T̄ r

(

Û2Û1ρ0

(

Û1
)† (

Û2
)†
)

, (35)

where Û i is anyone of {N c, F c, N q, F q}. This will give all 4 × 4 values of
(

Gi
µν

)

L1×L2
.

In classical game, we require and notice that Gi is naturally a (0, 2)-tensor, because
the payoff of mixture strategy is the weighted average with their own probability. The
linear property of this payoff is a requirement of our new system-level payoff function,
which is a (1, 1)-tensor, or we say, linear for right vector, anti-linear for left vector.

Here in quantum game, from equ(35) we find Gi is definitely not a tensor, not a
linear mapping. Then is it possible to transform such payoff into system-level (1, 1)
tensor? We need to prove it. From classical game, one thing we already know that in
the classical state subspace Hc = {N c, F c}, no matter the strategy is pure or mixture,
such transformation exists. So we use three steps to prove that a system-level (1, 1)
tensor payoff can be constructed.
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First, for system state only staying on one base vectors {N c, F c, N q, F q}, so that

ρs = |S〉 〈S| and |S〉 =
∣

∣s1, s2
〉

, (36)

We define the elements

H i
SS := 〈S|H i |S〉 = T̄ ri

(

s2s1ρ0

(

s1
)† (

s2
)†
)

= Gi
s1s2 .

H i
SS

′ :=
〈

S
∣

∣H i
∣

∣S
′

〉

= T̄ ri
(

s2′s1′ρ0

(

s1
)† (

s2
)†
) . (37)

For example, H1
nc,nc;nc,nc = 1, which means when both player 1 and player 2 choose

F c, player 1 wins; H1
nc,nc;nq,nc = 1, which has no classical meaning, because it’s a

off-diagonal elements. But it’s easy to prove that H i is hermitian,

H i
S
′
S

=
〈

S
′
∣

∣H i
∣

∣S
〉

= T̄ ri

(

s2s1ρ0

(

s1′
)† (

s2′
)†
)

=

[

T̄ ri

(

s2s1ρ0

(

s1′
)† (

s2′
)†
)†
]∗

=
[

T̄ ri
(

s2′s1′ρ
†
0s

1s2
)]∗

=
(

H i
SS

′

)∗
,

so
(

H i
)†

= H i. (38)

Second, we prove that for a system state not staying on the base vector, but on
pure state, such as

ρs = |S〉 〈S| and |S〉 = x1
1

∣

∣s1
1, s

2
〉

+ x1
2

∣

∣s1
2, s

2
〉

,

we still have Ei (S) = Tr
(

ρsH i
)

= 〈S|H i |S〉, in which H i is a (1, 1)-tensor.

Proof: from payoff definition equ(35),

Ei(x1
1

∣

∣s1
1

〉

+ x1
2

∣

∣s1
2

〉

,
∣

∣s2
〉

) = T̄ ri
(

s2
(

x1
1s

1
1 + x1

2s
1
2

)

ρ0

(

x1
1s

1
1 + x1

2s
1
2

)† (
s2
)†
)

= x1
1x̄

1
1T̄ ri

(

s2s1
1ρ0

(

s1
1

)† (
s2
)†
)

+

x1
1x̄

1
2T̄ ri

(

s2s1
1ρ0

(

s1
2

)† (
s2
)†
)

+

x1
2x̄

1
1T̄ ri

(

s2s1
2ρ0

(

s1
1

)† (
s2
)†
)

+

x1
2x̄

1
2T̄ ri

(

s2s1
2ρ0

(

s1
2

)† (
s2
)†
)

,

in which we need the property that T̄ ri is a linear mapping. On the other hand, when
H i is a (1, 1)-tensor,

〈S|H i |S〉 =
(

x̄1
1

〈

s1
1, s

2
∣

∣+ x̄1
2

〈

s1
2, s

2
∣

∣

)

H i
(

x1
1

∣

∣s1
1, s

2
〉

+ x1
2

∣

∣s1
2, s

2
〉)

= x1
1x̄

1
1

〈

s1
1, s

2
∣

∣H i
∣

∣s1
1, s

2
〉

+
x1

1x̄
1
2

〈

s1
2, s

2
∣

∣H i
∣

∣s1
1, s

2
〉

+
x1

2x̄
1
1

〈

s1
1, s

2
∣

∣H i
∣

∣s1
2, s

2
〉

+
x1

2x̄
1
2

〈

s1
2, s

2
∣

∣H i
∣

∣s1
2, s

2
〉
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Using the definition of H i
SS

′ in equ(37), we know they equal.

At last, we prove for a mixture state, such as

ρs = p1
1

∣

∣s1
1, s

2
〉 〈

s1
1, s

2
∣

∣+ p1
2

∣

∣s1
2, s

2
〉 〈

s1
2, s

2
∣

∣ ,

we still have Ei (S) = Tr
(

ρsH i
)

.

Proof: using above result,

Tr
(

ρsH i
)

=
∑

µ,ν

〈

µ, ν
∣

∣ρsH i
∣

∣µ, ν
〉

= p1
1

〈

s1
1, s

2
∣

∣H i
∣

∣ s1
1, s

2
〉

+ p1
2

〈

s1
2, s

2
∣

∣H i
∣

∣ s1
2, s

2
〉

= p1
1E

i
(

s1
1, s

2
)

+ p1
2E

i
(

s1
2, s

2
)

= Ei (S)

Therefor, for any system state we still have

Ei (S) = Tr
(

ρsH i
)

. (39)

The payoff matrix of the quantum penny flip game is a 16 × 16 matrix

H1 =



























































1 0 1 0 0 1 0 i 1 0 1 0 0 −i 0 1
0 −1 0 i −1 0 1 0 0 −1 0 i i 0 −i 0
1 0 1 0 0 1 0 i 1 0 1 0 0 −i 0 1
0 −i 0 −1 −i 0 i 0 0 −i 0 −1 −1 0 1 0
0 −1 0 i −1 0 1 0 0 −1 0 i i 0 −i 0
1 0 1 0 0 1 0 i 1 0 1 0 0 −i 0 1
0 1 0 −i 1 0 −1 0 0 1 0 −i −i 0 i 0
−i 0 −i 0 0 −i 0 1 −i 0 −i 0 0 −1 0 −i

1 0 1 0 0 1 0 i 1 0 1 0 0 −i 0 1
0 −1 0 i −1 0 1 0 0 −1 0 i i 0 −i 0
1 0 1 0 0 1 0 i 1 0 1 0 0 −i 0 1
0 −i 0 −1 −i 0 i 0 0 −i 0 −1 −1 0 1 0
0 −i 0 −1 −i 0 i 0 0 −i 0 −1 −1 0 1 0
i 0 i 0 0 i 0 −1 i 0 i 0 0 1 0 i

0 i 0 1 i 0 −i 0 0 i 0 1 1 0 −1 0
1 0 1 0 0 1 0 i 1 0 1 0 0 −i 0 1



























































and H2 = −H1. Compare with the new payoff matrix of classical game with the one
of quantum game, a significant difference is that the later has non-zero off-diagonal
elements while the former only has diagonal elements. Through this representation we
know the difference between classical game and quantum game is not only the size of
strategy space but also the off-diagonal elements of payoff matrix.

If we defined a quantum game by payoff matrix H i, another privilege of this new
representation is that the definition of a quantum game is independent on (H, ρ), the
state of a quantum object. Our payoff function can be directly defined on system
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state ρS . Of course, any payoff defined on (H, ρ) can be transferred equivalently into a
function on ρS. So a quantum game can be defined as

Γ =

(

N
∏

i

(

×Si,q
)

,

N
∏

i

(

×Si,c
)

,
{

H i
}

)

. (40)

in which Si,q has base vectors
{∣

∣

∣s
i,q
µ

〉}

, and Sc
i has base vectors

{∣

∣

∣s
i,c
ν

〉}

. Usually the

later is a subset of the former. A classical payoff function is defined on system base
vectors such as H i,c =

∑

S |S〉H
i,c
SS 〈S|, while a quantum payoff function is defined as

H i =
∑

SS
′

∣

∣

∣
S
〉

H i
SS

′

〈

S
′

∣

∣

∣
.

2.5 Quantized-classical player vs. quantum player

In equ(34), we point out the relative size of strategy space of all games and ask if
there is any independent meaning of all the new defined game. Now, we have a clearer
picture. The requirement that Quantized Classical Game has independent meaning is
that the payoff matrix has non-zero off-diagonal elements. It seems possible, because
the payoff matrix of quantum game has off-diagonal elements. But there is another
requirement coming from Quantum Mechanics not from Game Theory. Are the strate-
gies in quantized strategy space meaningful operators, or forbidden by Quantum Me-
chanics? A player staying in classical strategy space and being able to make use of
quantized pure strategy can generate pure state of the quantum object by the strategy

|sc,q〉 =
√

2
2 |N c〉 +

√
2

2 |F c〉. The end state after such movement is

ρ1 = sρ0s
† =

1

2

[

1 1
1 1

]

,

which can also be generated by a unitary operator U
(

π
4 , 0
)

. Although this quantized-
classical player can’t make money by such strategy (because it has no inverse matrix),
it provides more freedom of the choice of the first strategy, which can generate the
same end state with the corresponding unitary matrix. And the conclusion that such
a quantized-classical player can’t make money in his own space is problem depen-
dent. Maybe in other problems, we can find such equilibrium strategy, by which the
quantized-classical player can make money. Then even in such a subspace expanded by
classical base vector, the off-diagonal elements of payoff matrix make it possible for a
quantized-classical player competitive with a quantum player.

And the strategy space of quantized quantum game includes general mixture strat-
egy other than pure quantum strategy and classical mixture strategy. Will such general
state provide other possibility of equilibrium state?

3 Pseudo-Dynamical Theory of Equilibrium State

In the new representation, a game seems very similar with an Ising model with global
interaction. The payoff of every player is related with everyone else. The state of every
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player can be represented by a quantum state vector or density matrix. Every player
try to stay at point with the maximum payoff, while in Ising model, the whole system
try to stay at minimum energy point. The distribution of a quantum system at thermal
equilibrium is

ρ = 1
Z

e−βH and Z = Tr
(

e−βH
)

, (41)

where H is the system Hamiltonian, Z is so called partition function.

Now as in Statistical Mechanics, we introduce the idea of distribution function of
state into Game Theory, but instead of function in Γ space in Statistical Mechanics,
here in µ space, the state space of every single player. A natural form is

ρi = 1
Z

eβHi
R and Z = Tr

(

eβHi
R

)

, (42)

in which H i
R is the payoff function of player i in its own strategy space and Z is the

partition function in i’s strategy space. The payoff matrix H i we have now is defined
in system strategy space. So a kind of reduced matrix is what we need to find.

Before the detailed calculation, one thing we should notice that the equilibrium
density matrix description is different with the classical mixture strategy. If the eigen-
vectors of H i

R can be found as {|µ〉ǫ}, then

ρi =
∑

µ

pi
µ,ǫ |µ〉

ǫ 〈µ|ǫ (43)

is similar with the classical mixture strategy form, and pi
µ,ǫ can be regarded as the

probability on strategy µǫ. But first, such an set of eigenvectors is not always the
same as the classical base vectors, because sometimes, we have non-zero off-diagonal
elements. Second, such a density matrix gives the probability of any pure strategies |s〉
even being different with the base vector, by

pi
s =

〈

s
∣

∣ρi
∣

∣ s
〉

. (44)

This is impossible in mixture strategy description.

3.1 Reduced payoff matrix and Kinetics Equation for Equilibrium

State

Now we start to defined the reduced payoff matrix and investigate its properties. A
Nash Equilibrium state is defined that at that point every player is at the maximum
point due to the choices of all other players. A reduced payoff matrix should describe
the payoff of a single person when the choice of all other players. In the traditional
language such a reduced payoff matrix is equivalently to be defined like the end result

of equ(14) under any arbitrary fixed
∣

∣P 2
〉old

. But we need a matrix form.

For pure system strategy, H i (〈S| ; |S〉) is a (1, 1)-tensor. In a 2-player game,
H i
(〈

s1
∣

∣ ,
〈

s2
∣

∣ ;
∣

∣s1
〉

,
∣

∣s2
〉)

can also be regarded as a (2, 2)-tensor. A reduced payoff
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matrix of player i means in the point view player i it should be a (1, 1)-tensor. When

both player 1 and player 2 stays on pure strategy
∣

∣s1
〉

,
∣

∣

∣
s2
fixed

〉

respectively, it has

a natural definition, H1
R

(〈

s1
∣

∣ ;
∣

∣s1
〉)

= H1
(

〈

s1
∣

∣ ,
〈

s2
fixed

∣

∣

∣
;
∣

∣s1
〉

,
∣

∣

∣
s2
fixed

〉)

. Since our

strategy can be a mixture state, or generally a density matrix form, we need to gen-
eralize the above definition. A reduced payoff matrix of player 1 in a 2-player game is
defined as

H1
R = Tr2(ρ2

fixedH
1), (45)

where Tr2 is the trace in subsapce of player 2. From equ(39), the payoff value of player
1 is

E1 = Tr
(

ρ1ρ2H1
)

=
∑

S 〈S| ρ1ρ2H1 |S〉
=

∑

γν

∑

αβ 〈γν| ρ1
αβ |α〉 〈β| ρ2H1 |γν〉

=
∑

αβ ρ1
αβ

∑

ν 〈ν| 〈β| ρ
2H1 |α〉 |ν〉

=
∑

αβ ρ1
αβ 〈β|Tr2

(

ρ2H1
)

|α〉

=
∑

αβ ρ1
αβ 〈β|H1

R |α〉

= Tr1
(

ρ1H1
R

)

So if we know the reduced payoff matrix of player 1, the payoff value can be calculated
by

E1 = Tr1(ρ1H1
R). (46)

In fact the Tr2 action is quite hard to perform, because this requires the result of
a trace is a matrix, not a number as usual. An equivalent but easily understood form
of equ(45) is

(

H1
R

)

αβ
= Tr2(ρ2

fixedH
1
αβ),

in which H1
αβ is a sub matrix with fixed player 1’s index (here, first and third index). In

order to define a general form for N -player game, we denote the trace Tri as diagonal
summation in the space except player i’s. So in 2-player game, Tr1 = Tr2. Then a
general reduced payoff matrix of player i under fixed strategies of all other players is

H i
R = Tri(ρ

1 · · · ρi−1ρi+1 · · · ρNH i). (47)

Still using the Prisoner’s Dilemma as example, when player 2 choose strategy C

with p2
c and D with p2

d, the state is

ρ2 =

[

p2
c 0
0 p2

d

]

Then

H1
R = Tr1









[

p2
c 0
0 p2

d

]









−2 0 0 0
0 −5 0 0

0 0 0 0
0 0 0 −4

















=

[

−2p2
c − 5p2

d 0
0 0 · p2

c − 4p2
d

]

.
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Recalls Metropolis Method and its derivative Heat Bath[8] Method in Monte Carlo
Simulation of Statistical Ensemble. In the simulation of equilibrium state of Ising
model, every single step, when a random spin is chosen, it faces the same situation
with our game player. All other spins have decided one state to stay temporary, it has
some choices of his own state by evaluating the energy difference between all its possible
states. Then it choose one state to stay by a transition probability or transition rate
over all possible states. The Kinetics Equation for such process is not unique, different
forms of transition probability can give the same equilibrium state.

Now we face a quantum system, although a similar situation. Every player should
make his decision every step with the fixed state of all other players and we also ask
for the equilibrium state. The reason that different Kinetics Equations give the same
equilibrium state in Statistical Physics is the well-known Detailed Balanced Theorem
in thermal equilibrium, but we don’t have a corresponding one in Game Theory. We
now just suppose that at equilibrium state, the density matrix of player i’s state is

ρi = 1
Z

eβHi
R and Z = Tri

(

eβHi
R

)

. (48)

And we choose a heuristic Kinetics Equation as iteration equation,

ρi (t) =
1

Z (t − 1)
eβHi

R(t−1) (49)

Then the equilibrium state is defined as the fixed point of this iteration.

3.2 Examples and the effect of β

In fact, Kinetics Equation equ(49) is N related iteration equations. The existence of
the fixed point is not obvious. Even the questions itself is not unique, although the
experience in simulation in Statistical Physics implies that such equation should exist
might with different form. The fixed point might be different with Nash Equilibrium
even if it exists. In this paper, all these questions are neglected. Let’s first test such
idea in some examples, just like what a physicist usually does, not a mathematician,
who will pay more attention on a general definition of equilibrium state and the proof
of the existence.

Equ(49) of a classical game is much easier to deal with than the one of a quantum
game. In classical game, both H i and H i

R are diagonal. The density matrix at time t

can always be written as ρi (t) =
∑

α pi
α (t) |α〉 〈α|, then equ(49) will lead to a series of

evolution equations for pi
α (t).

However, in quantum game, since the payoff matrix H i has off-diagonal elements,
the reduced payoff matrix H i

R also can have off-diagonal elements. Then the density
matrix can be equivalently replaced by evolution equation of pi

s (t) only when the
density matrix is expressed in the base vector formed by the eigenvectors of H i

R. But
with off-diagonal elements, such eigenvectors are not always the base vector we used to
express the game and they might change during the iteration process. So the first step
is to solve the eigenvalue equation of H i and H i

R.
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3.2.1 Eigenvalue Problem

The eigenvalue problem in classical game is quite easy. All the eigenvectors are the
base vector we used, the eigenvalues are just the corresponding diagonal elements. In a
quantum game, it depends on the details of payoff matrix. For example, in the quantum
penny flip game, the payoff matrix H1 has 16×16 elements. Even when player 2 choose
ρ2,fixed = |N c〉 〈N c|, the reduced payoff matrix of player 1 is

H1
R =









1 0 1 0
0 −1 0 i

1 0 1 0
0 −i 0 −1









The eigenvalues and the corresponding eigenvectors are










−2 → [0,−i, 0, 1]T

2 → [1, 0, 1, 0]T

0 → [−1, 0, 1, 0]T

0 → [0, i, 0, 1]T











.

This means a quantum player can make money over the classical player with ρ2,fixed

by using strategy
√

2
2 [1, 0, 1, 0]T . And the funny thing is the value of payoff the 2, not

1 in classical case when player 1 uses [1, 0, 0, 0]T . It clearly shows the effect of the
off-diagonal elements for a quantum player. If the player 1 is still a classical player, the
strategy he can use is just N c, F c, so he will get 1,−1 respectively. Anyway, the topic of
this section is show the way to do the iteration defined in the Kinetics Equation equ(49).
Now we have the idea. Starting, for instance, from player 2 choose ρ2 (t = 0) = ρ2,fixed,
the state of player 1 is then

ρ1 (t = 1) =
1

e−2β + e2β + 2e0β

(

e−2β |−2〉 〈−2| + e2β |2〉 〈2| + e0β |01〉 〈01| + e0β |02〉 〈02|
)

.

And then substitute it back to equ(49) and do the iteration. However, from above
density matrix we know that even beginning from a pure state, the state after one
iteration will be a mixture state. In classical game, it doesn’t matter, because the end
state generally can be a mixture state, and a pure state is equivalent with a mixture
state with the same diagonal part. But in quantum game, mixture strategy is quite
different with a pure one. One way to deal with this problem is to set β = ∞. Then
the Kinetics Equation of quantum game becomes,

ρi (t) =
∣

∣si
Max

〉 〈

si
Max

∣

∣ , (50)

in which
∣

∣si
Max

〉

is the eigenvector with maximum eigenvalue of the reduced payoff
matrix. So only the maximum one is kept after every step. But this will brings new
problems when the equilibrium state is a mixture state. So for quantum game, it’s
better to regard the approach shown here just as an idea. Later on, classical game is
our main object. The task of this section is just to point out that a quantum game
brings new things such as eigenvalue problem while which is quite trivial in classical
game.
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3.2.2 Equilibrium state calculation of several examples

Now we come to use our Kinetics Equation approach on some examples of classical
game. First, let’s finish the discussion about the Prisoner’s Dilemma. We already
know

H1
R =

[

−2p2
c − 5p2

d 0
0 0 · p2

c − 4p2
d

]

and H2
R =

[

−2p1
c − 5p1

d 0
0 0 · p1

c − 4p1
d

]

.

Suppose we start from player 2 with
(

p2
c (0) , 1 − p2

c (0)
)

, then from equ(49),



















p1
c (t) = e

β(−2p2
c(t−1)−5p2

d(t−1))

e
β(−2p2

c(t−1)−5p2
d
(t−1))+e

β(0·p2
c(t−1)−4p2

d
(t−1))

= 1

1+eβ(1+p2
c(t−1))

p2
c (t + 1) = 1

1+eβ(1+p1
c(t))

When β = ∞, which means infinite resolution level, or we say, any difference in payoff
is significant, then p1

c = 0 = p2
c . The equilibrium state is (D,D), which is equivalent

with Nash Equilibrium. When β is finite, denote the fixed point as
(

p
1,∗
c , p

2,∗
c

)

. The

stability of this fixed point can be analyzed by the linear stability matrix,

S =

[

∂p1
c

∂p1
c

∂p1
c

∂p2
c

∂p2
c

∂p1
c

∂p2
c

∂p2
c

]

(p1,∗
c ,p

2,∗
c )

,

(

∂pi
α

∂p
j
µ

)

(
∏

i Li)×(
∏

i Li)

∣

∣

∣(pi,∗
ν ) (51)

In our specific case, it’s unstable, the fixed point graph of the Kinetics Equation is
shown in fig(1). When β = 0, which means the players care nothing about the payoff,
then p1

c = 1
2 = p2

c . Of course, such solution is useless, but still consistent with our
intuitive result.

Second example, we choose Hawk-Dove, a two-NE game. The payoff matrix of
player 1 and 2 are

H1 =









3 0 0 0
0 1 0 0
0 0 4 0
0 0 0 0









,H2 =









3 0 0 0
0 4 0 0
0 0 1 0
0 0 0 0









The reduced payoff matrix is

H i
R =

[

3p
(3−i)
h + 1p

(3−i)
d 0

0 4p
(3−i)
h

]

Then the Kinetics Equation is

pi
h =

1

1 + e
β
(

p
(3−i)
h

−p
(3−i)
d

)
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Figure 1: The iteration process defined by the Kinetics Equation of Prisoner’s Dilemma
drives the fixed point from a finite number to 0 when β growths. Because here only
one parameter pc we need to calculate, a simple fixed point graph shows the result.
Usually in a multi-strategy game or with more players, we will have more parameters
and more complex equations. Then in that situation, we will have to use simulation.
The function plotted here is pc = 1

1+eβ(1+pc) . Because the two steps of one iteration
use the same function form, it can be regarded as two iteration steps with only one
function.
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Figure 2: The fixed points are almost the same value for different β. It’s 0.5, an
unstable fixed point, which means if the initial state is not the fixed point, the system
will leave away from the fixed point. Here the end state can be a jump between (0, 1)
and (1, 0). The function plotted here is ph = 1

1+eβ(2ph−1) .

21



It’s easy to know that when β = ∞, fixed point is
(

p1
h = 0, p2

h = 1
)

if the initial condition
is p2

h > p2
d, and vice versa. But if p2

h = p2
d, it will stay at

(

p1
h = 1

2 , p2
h = 1

2

)

, although
it’s unstable. For a finite β, a fixed point graph is shown in fig(2).

The third example is the classical sub-game in our quantum penny flip game. The
payoff matrix are

H1 =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









= −H2.

The reduced payoff matrix is

H1
R =

[

p2
n − p2

f 0

0 p2
f − p2

n

]

,H2
R =

[

p1
f − p1

n 0

0 p1
n − p1

f

]

.

Then the Kinetics Equation is

p1
n =

1

1 + e
2β(p2

f−p2
n)

, p2
n =

1

1 + e
2β(p1

n−p1
f)

.

From fig(3),
(

p1
n = 1

2 , p2
n = 1

2

)

is the only fixed point no matter β = ∞ or not. And
even the only fixed point is unstable.

The Kinetics Equation, its fixed points and the stability analysis of the fixed points
gives a method to find equilibrium state and to refine them if we require an equilibrium
point is a stable fixed point. From the trivial application it works. But questions such
as more tests, a general form of such equation, and the relation between such fixed
points and Nash Equilibrium is waiting for more detailed discussion.

At last, we have to admit that our simulation is not equivalent with the Kinetics
Equation. Pure strategies are included by the Kinetics Equation, but since our algo-
rithm is classical, here we only let it evolute in the subspace of mixture strategy. For
classical game, this is not a fatal problem, because we have prove that pure strategy
is equivalent with mixture strategy having the same diagonal part. But for a quan-
tum game, pure strategy is totaly different with the mixture classical one because of
the off-diagonal elements of payoff matrix. Is it possible to find such a simulation
algorithm?

On the other hand, when β 6= ∞, the fixed point of our Kinetics Equation might
not equal to the Nash Equilibrium state. Such fixed point is the end state when
the average resolution level of all players is β, which can be regarded as a typical
scale that players care. This concepts may expand the description of Game Theory,
maybe into the situation that players are not complete rational. They can evaluate the
payoff, but not explicitly, only a rough range. And from the experience in Statistical
Physics, especially Phase Transition, we know that even when β is not very large but
large enough the lowest energy mode (here, maximum payoff mode) will dominate the
system. This means, under some not extremely restricted conditions, the traditional
Nash Equilibrium is still valid. It will be funny if one can prove such conclusion from
a general situation in our equilibrium definition.
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Figure 3: The fixed points are almost always 0.5 for different β. In figure (a), the
function plotted here is p1

n = 1

1+e
2β

(

1−2 1
1+2β(2p1

n−1)

) . In figure (b), two iteration functions

are used to show a clearer but more complex picture, from which we know (0.5, 0.5) is
still a fixed point, but if starts from initial state other than this point, the system will
jump between (0, 1) and (1, 0).
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4 Discussion

It’s quite straightforward to extend our notation into N -player game and continuous
strategy case. However, although a new representation has been introduced to express
everything in a static game, the advantage of such a language and the meaning of all
other games is still open. And further more, if it’s acceptable for static game, is it
possible to be developed into Evolutionary Game Theory? And cooperative game? Is
it related with entangled system state?

As discussed in section 3.2, because of the iteration procedure and the distribution
function we used, a natural way of equilibrium calculation and refinement is provided
by our pseudo-dynamical method. The non-trivial phase transition happening in Statis-
tical Physics at finite β = βc implies the probability that when N >> 1 the traditional
equilibrium state can be reached at some finite noise level, not necessary at no-noise
infinite-resolution background. In this paper, we only argued such possibility, not by a
real example. Further analysis should be done to confirm such statement, although we
believe it from the background in Physics.

And as discussed in section 2.4, when our representation is used in Quantum Game
Theory, a set of base vectors of strategy (operator) space and their inner product need
to be defined to form them as a Hilbert space. Then all the other procedures are quite
straightforward. At least, it gives equivalent description. But there are still some open
questions, like what’s the meaning of a non-unitary but quantized-classical operator?
Does all physical operator have to be unitary operator? Another interesting question is
the effect of base vector transformation of Hilbert space. What happens if base vectors
other than our (N c, F c, N q, F q) are used?

We have to say our present result is far away than a complete theory. It stacks
in our hands for a very long time, now we want to share the idea with all. In fact,
it’s even possible to be nothing than a toy representation of Game Theory. However,
even in such case, it’s still of little value to provide a unified description and a possible
pseudo-dynamical equation theory which might be completed later so that the end state
of iteration from an arbitrary initial will be the Equilibrium State. As you may already
noticed our paper is filled with questions other than their answers. Hopefully it will
motivate the discussion. Ironically, during the revision of this paper, we found that
the idea using a Hilbert space to describe classical and quantum strategies has been
proposed in [7] long time before. So our works can be regarded as a realization and
development of this idea. In this paper, not only strategies, but also payoff functions
has been reexpressed into Hilbert space and operators on it.

5 Conclusions and outlook

Besides lots of questions in above section, here we summarize the reliable conclusions we
have till now. First, in the new representation, all games including classical, quantum,

even entangled game, under general N -player
(

∏N
i=1 Li

)

case, can be defined by a
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unified definition as equ(40). All the difference among the games is at the base vectors
of strategy space and the payoff matrix — a (1, 1)-tensor. While in the traditional
form, payoff function of N -player classical game is (0, N)-tensor. For quantum game,
it depends on H and ρ0, even no tensor form.

Second, in our representation, it’s easy to see the role of Off-diagonal elements and
the reason of quantum player over classical player. Although a quantum player can
make use of quantum pure strategy, which has off-diagonal elements in density matrix,
if the payoff matrix is diagonal, it makes no difference. Game Quantum is only possible
when both density matrix and payoff matrix have off-diagonal elements.

At last, with the form of payoff matrix and reduced payoff matrix, equilibrium
density matrix in Quantum Statistical Mechanics eβHi

R gives an equilibrium distribution
over strategy space. This provides some flexibility on the application of game theory
such as average behavior and collapse into Nash Equilibrium under infinite resolution
level (β = infty).

If such a representation can provide some other insightful advantage besides an
equivalent representation of both Classical and Quantum Game Theory, it’s necessary
to try more real games, both classical and quantum, in the new framework. From the
section §3.2.1, we see that because the system space is the direct space of all players’, the
matrix form will be so large that it make all calculations un-convenient. In Quantum
Mechanics, the idea to solve such problem is to introduce particle-number represen-
tation to replace direct product of base vectors. For undistinguishable particles, such
approach significantly reduce the hardwork of calculation. Maybe such simplification
can be generalized into Game Theory.
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