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Abstract

To study transport properties, one needs to investigate the system of inter-
est when coupled to biased external baths. This requires solving a master
equation for this open quantum system. Obtaining this solution is very chal-
lenging, especially for large systems. This limits applications of the theories
of open quantum systems, especially insofar as studies of transport in large
quantum systems, of interest in condensed matter, is concerned.

In this thesis, I propose three efficient methods to solve the Redfield
equation — an example of such a master equation. The first is an open-
system Kubo formula, valid in the limit of weak bias. The second is a solu-
tion in terms of Green’s functions, based on a BBGKY (Bogoliubov–Born–
Green–Kirkwood–Yvon)-like hierarchy. In the third, the Redfield equation
is mapped to a generalized Fokker-Planck equation using the coherent-state
representation. All three methods, but especially the latter two, have much
better efficiency than direct methods such as numerical integration of the
Redfield equation via the Runge-Kutta method. For a central system with a
d-dimensional Hilbert space, the direct methods have complexity of d3, while
that of the latter two methods is on the order of polynomials of log d. The
first method, besides converting the task of solving the Redfield equation to
solving the much easier Schrödinger’s equation, also provides an even more
important conceptual lesson: the standard Kubo formula is not applicable
to open systems.

Besides these general methodologies, I also investigate transport proper-
ties of spin systems using the framework of the Redfield equation and with
direct methods. Normal energy and spin transport is found for integrable but
interacting systems. This conflicts with the well-known conjecture linking
anomalous conductivity to integrability, and it also contradicts the relation-
ship, suggested by some, between gapped systems (Jz > Jxy) and normal
spin conductivity. I propose a new conjecture, linking anomalous transport
to the existence of a mapping of the problem to one for non-interacting
particles.

ii



Preface

The work presented in Chapters 2 and 6 are a continuation of the work done
for my M.Sc. thesis. This work is reported in the manuscript:

“Heat transport in quantum spin chains: the relevance of integrability”,
Jinshan Wu and Mona Berciu, submitted to Physical Review B and posted
as arXiv:1003.1559.

The work presented in Chapter 3 is reported in Jinshan Wu and Mona
Berciu 2010 Europhysics Letters 92 30003.

The first part of the work presented in Chapter 4 is reported in Jinshan
Wu 2010 New J. Phys. 12 083042. The second part, which is on the second-
order BBGKY-like method, is currently under preparation for publication.

Original work reported in other chapters will be prepared for publication
in the near future.

All the original work in this thesis was carried out by JW who also
developed the conception, scope and methods of this research, with various
degrees of consultation and editing support from MB.
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Chapter 1

Introduction

Theories of open quantum systems [1–3] usually start from an effective equa-
tion of motion of the central systems of interest, which is usually derived
from the exact equation of motion for the composite system — the cen-
tral system plus the bath(s). Although various approximations are involved
in deriving such effective equations of motion, which are sometimes called
quantum master equations, they are believed to be reasonably reliable since
they are built on relatively firm grounds, i.e. an equation of motion derived
from first-principles.

Theories of transport [4, 5] in solid state physics deal with a specific type
of open system, where the central system is coupled to multiple baths held
at different temperatures, chemical potentials, etc. As a result, study of
transport should be a branch of the theories of open quantum systems. In
practice, different theories based on other approaches have been developed
for transport studies, such as the Kubo formula [6, 7], the Landauer-Buttiker
formula [8–11] and the non-equilibrium Green’s function method [4, 12–16].
One important reason why theories of open quantum systems are not widely
used when studying transport is the computational difficulty in applying
them to large systems. In studies of relaxation times in nuclear magnetic
resonance [17], where the theories of open quantum systems provide the
standard tools, a typical central system has usually only a few degrees of
freedom. In contrast, in discussions of transport, one studies quite often
mesoscopic systems whose Hilbert space’s dimension easily exceeds 220.

It is the primary goal of this thesis to find new ways of making the theo-
ries of open quantum systems amenable for the study of transport in large(r)
systems, by finding efficient calculation schemes. For non-interacting sys-
tems there are straightforward methods to calculate stationary states and
therefore physical quantities, even if the system is large. Thus, the real
challenge is for systems with interactions, just as is the case in the study
of equilibrium properties and dynamical processes [18]. We will propose
various efficient and accurate approximations, and test them.

This chapter serves as an introduction to the subject and also an overview
of this thesis. Sections §1.1 and §1.2 briefly review the theories of open sys-
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1.1. Two major theoretical approaches

tems while focusing on their applications to the study of transport. Section
§1.3 lists our contributions, including the development of new methodolo-
gies and discovery of new physics from application of these methodologies
to certain specific systems.

The rest of this thesis follows the same line of logic as this overview, but
in more details. Chapter 2 reviews the projector technique used in theo-
ries of open quantum systems. Examples are given to illustrate the basic
procedure. The resulting effective equations of motion are solved via direct
methods, which have very poor efficiency. Then we present an approximate
solution based on linear response theory in Chapter 3. This approxima-
tion has better efficiency than the direct methods but not good enough to
be comparable to the non-equilibrium Green’s function method. Chapters
4 and 5 introduce two very efficient and accurate approximations. One is
based on a Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)-like equa-
tion hierarchy and the other is based on the coherent-state representation
of density matrices. In Chapter 6 we apply the direct methods to discuss
thermal transport of spin systems and the validity of Fourier’s Law.

At last, in Chapter 7 we summarize these results and list some of the
potentially valuable questions to be investigated in future, with our newly
developed methods. We also comment on the value and implications of the
work presented in this thesis.

1.1 Two major theoretical approaches

A rough picture of a typical experimental setup for measuring transport
properties is that of a quasi 1-d system coupled to multiple biased baths. We
want to calculate currents flowing through the system given the parameters
of the baths such as their temperatures, chemical potentials, etc. Such
calculations are relevant for comparison against experimental measurements
of charge, energy and spin transport, for example through quasi 1-d spin
systems [19], quantum wires including nanotubes [20], molecular devices [21–
24] and quantum dots [25, 26].

In particular, in recent years there have been many experiments looking
at heat transport of spin systems. The heat conductance κ = Jh

∆T , where Jh
is the heat current and ∆T the applied temperature bias, is measured for
a crystal with spin-chain structures. Typical crystals sizes are of roughly
a few mm. In order to measure the heat conductance contributed by the
spin chains, one has to subtract the conductance due to phonons and charge
carriers. Usually this is achieved by using anisotropic spin-chain compounds

2



1.1. Two major theoretical approaches

such as (Ca,Sr)14Cu24O41 [27], which contain S = 1
2 two-leg ladders with

an intra-chain coupling much stronger than the inter-chain coupling. By
measuring the difference between the conductance parallel to the chain and
that perpendicular to the chain, one finds the pure spin conductance. The
idea is that the parallel conductance is due to both the spin-chain and other
sources, while the perpendicular one only has the contributions from other
sources. Experimental results on spin chains in strong magnetic fields have
also been reported [28, 29]. However, at present, for spin chains, there is no
available data regarding temperature profiles and finite size-scaling for the
heat currents. This makes comparison with our theoretical results, discussed
in Chapter 6, impossible at this time.

In a recent measurement of thermal conductance of nanotubes [30], Wang
et al. reported the size dependence of heat currents and concluded that it
violates Fourier’s law.

For small, and especially also quantum, systems, it is not reliable to use
phenomenological laws such as Fourier’s law and Ohm’s law to characterize
their transport. To understand and model such systems, a theoretical frame-
work based on first principle is necessary. Developing such a framework is
not just a matter of theoretical interest, but also has obvious practical value.

Various theoretical models have been used so far. Some studies are
based on the phenomenological balance equation [31] or rate equation [32,
33], but the most common and systematic approaches are the Kubo for-
mula [6, 34, 35], the non-equilibrium Green’s function method [13–15], and
the open quantum system approach [1–3] with the system-bath scenario [36–
38]. In the approach based on the standard Kubo formula, the system itself
is assumed to be infinite and homogeneous. There is no explicit use of the
baths but instead the system is treated as being isolated. The current is
calculated as a response to a presumed applied electrical potential [6] or
temperature gradient drop [39], or uneven mass gradient distribution [40].
In the approach of non-equilibrium Green’s function and Landauer formula,
the system is modeled by three pieces: the left lead, the central system and
the right lead. The leads are taken as half-infinite non-interacting systems
and the central system is usually finite. There are no explicit baths in-
cluded in this picture. The parameters of the baths, such as temperatures
and chemical potentials, are attached to the corresponding leads. Finally,
the theories of open quantum systems deal with a finite-size central system
coupled explicitly to baths, whose degrees of freedom are then integrated
out. There are no infinite leads in this picture.

These three different physical pictures are supposed to describe the same
problem. Fisher and Lee [41] showed that for non-interacting systems the

3



1.1. Two major theoretical approaches

first two are somewhat equivalent if the same three-piece system is used
when applying the Kubo formula. We should note, however, that the ma-
jority of studies of conductance via the Kubo formula are using an infinite
homogeneous system [35, 42], or extrapolate from results on finite-size sys-
tems [43, 44]. With that being said, let us ignore the question of whether
these methods are equivalent, and focus only on the latter two approaches.
Comparisons between them, or even settling how to make them directly
comparable, has not been extensively studied.

Non-equilibrium Green’s functions is a perturbational theory starting
from a well-defined piece-wise equilibrium state of the disconnected three-
piece system. The left/right lead is assumed to be in its own equilibrium
state correspondingly defined by the left/right temperature and chemical
potential, while the central system is in an arbitrary equilibrium state [14].
From this, the Green’s function of the disconnected system is calculated
and later used to construct the full Green’s function of the connected sys-
tem, with the connection between the central system and the leads treated
as perturbation. The standard diagrammatic perturbation theory does not
apply here since the initial and final states are qualitatively different. It is
an essential assumption of the standard diagrammatic perturbation theory
that the states at both ±∞ in time are the same equilibrium state (or the
ground state if T = 0) of the unperturbed system. At this point a non-
equilibrium Keldysh formalism [12, 18] is used instead. Conceptually, the
condition that the two leads are half-infinite is essential. With any finite-
size leads, an equilibrium state – instead of the desired non-equilibrium
stationary state – will be reached ultimately since the unbalanced energies
or chemical potentials will be eventually dissipated over the whole system.
However, even for infinite leads, theoretically there is still no guarantee that
the proper stationary state can be calculated perturbationally [13]. In prac-
tice, for interacting systems, the non-equilibrium Green’s function method
is often used together with the density functional theory [13, 16]. Addi-
tional approximations, thus possibly additional errors [45, 46], are involved
in dealing with the interactions.

Theories of open quantum systems, on the other hand, are based on
relatively firmer grounds. They start from the first-principle equation of
motion of the composite system, and arrive at an effective equation of mo-
tion of the central system. Various equations can be derived depending on
the level of approximations. Using the influence functional theory [47, 48],
exact time-dependent master equations have been derived for simple cen-
tral systems [49]. Examples include a two-level system, one harmonic os-
cillator and two coupled harmonic oscillators, which is the current limit of

4



1.2. A big challenge for the system-baths scenario

such exact approaches [50]. When the Markovian approximation is used,
time-independent master equations have also been derived from the exact
ones [51]. For more general central systems, some direct brute-force gener-
alization of the master equation of a simple two-site system have also been
used in the literature. We will call one kind of such equations the local-
operator Lindblad equation for reasons that will be clear later. It is in fact
very hard to derive exact master equations from influence functional theory
for general central systems. Instead, approximate equations can be derived
from the projector technique [51] or other similar techniques. Such a master
equation is sometimes called the Redfield equation [52–54]. Applications of
the Redfield equation to transport studies are in an early but fast develop-
ing stage [36–38, 55–57]. Others prefer to use the local-operator Lindblad
equation [58, 59], which turns out to be relatively easier to solve numerically.

It is usually easier to deal with large systems using non-equilibrium
Green’s functions, than it is with theories of open quantum systems. In
practice, quite often a set of few-particle Green’s functions are enough for
calculating the physical quantities of interest. The number of single-particle
Green’s functions, for instance, is much smaller than the number of ma-
trix elements of the density matrix, which appears in the Redfield equation.
Consider for example an N -site 1-d spinless fermionic system. The set of all
single-particle Green’s functions has N2 unknowns while a density matrix
has 22N unknowns. Therefore, unless an efficient calculation scheme whose
complexity scales as N2 can be found, numerically the two approaches are
not comparable at all. This explains why the non-equilibrium Green’s func-
tion method is much more widely used than other methods to study trans-
port in solid state systems. To many, it does not even seem necessary and
urgent to compare results from the two methods and determine which is
more accurate or even which one is correct.

This situation may change if efficient methods to solve the Redfield equa-
tion are found, as is the goal of this thesis.

1.2 A big challenge for the system-baths scenario

Both the general Redfield equation and the general local-operator Lindblad
equation can be cast into the form of a generalized Liouville equation,

d

dt
ρ (t) = Lρ (t) , (1.1)

where ρ (t) is the density matrix of the central system and L is a linear
superoperator acting on the density matrix. We are only interested in the

5



1.2. A big challenge for the system-baths scenario

long-term stationary state and the steady current associated with it. The
stationary state is defined by

Lρ (∞) = 0, (1.2)

where ρ (∞) is the long-term non-equilibrium stationary state. If the Hilbert
space of the central system is d-dimensional, then the density matrix has d2

elements. If we represent the density matrix as a vector, for example,

P = [ρ11, ρ12, · · · , ρdd]T , (1.3)

then the linear superoperator L is a d2×d2 matrix. The task of finding ρ (∞)
thus implies finding the zeroth mode of L — the eigenvector corresponding
to the zero eigenvalue. One can imagine that this becomes nontrivial when
d > 210, as in the example of a fermionic chain with N > 10 mentioned
earlier.

The central task of this thesis is to find efficient methods to solve this
equation. Before we present our work, we briefly review the currently avail-
able methods.

Instead of solving directly for the zero mode of L, we may instead let
the system evolve from an arbitrary initial state long enough to arrive at
ρ (∞). Thus, the first class of solutions are based on propagators – this
includes the direct Runge-Kutta method [37, 60], the Newtonian polynomial
propagator [61], the short-iterative-Arnoldi propagator [62] and the short-
time Chebyshev polynomial propagator [63]. All these methods have been
compared in Ref. [64]. As for their efficiency, they are all roughly on the
same scale – their complexities scale roughly as d3.

A more efficient approach is the stochastic wave-function method [2,
65, 66]. The basic idea is to replace the effective equation of motion by
a stochastic Schrödinger equation for wave functions. The method has a
complexity scaling as d2. On the local-operator Lindblad equation it has
been shown that the stochastic wave-function method leads to accurate re-
sults [67]. Breuer et al. showed that it can also be applied to the Redfield
equation [65], but its efficiency is still not comparable with that of the non-
equilibrium Green’s functions method.

For the local-operator Lindblad equation, in fact, there is another quite
efficient method developed recently by Prosen et al. [59]. It is based on
the time-dependent density matrix renormalization technique. This method
makes it possible to analyze systems roughly of the same size as those that
can be studied with the non-equilibrium Green’s functions method. It is still
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an open problem to extend this approach to the Redfield equation. How-
ever, we should note that the same central system might behave differently
under evolution described by the local-operator Lindblad equation versus
the Redfield equation. In fact, this issue has not been settled because of the
lack of comparison between the results of the two approaches. The lack of
efficient methods for the Redfield equation has certainly contributed to this
state of affairs. With our newly developed methods, such a comparison can
finally be undertaken.

1.3 Our methods and their applications

In this section, we roughly summarize the ideas, performances and applica-
tions of our newly developed methods. Their details will be discussed in the
rest of this thesis. We have developed three different methods, with different
strenghts and weaknesses.

1.3.1 Linear response theory

The first method is a linear response theory based on the Redfield equation.
The basic idea is very simple. The equilibrium state of the central system
(when unbiased) is known to be the Boltzmann distribution. The stationary
state of the Redfield equation under appropriate conditions, i.e. all baths
at the same temperature and chemical potential, is indeed the Boltzmann
distribution. This makes it possible to separate the operator L into a large
part L0 and a small part ∆L, where the former part is the operator describ-
ing the equilibrium conditions. Then, the non-equilibrium distribution can
be treated as a perturbational response to the small part ∆L. This method
has efficiency comparable to the stochastic wave-function method.

Besides the gain in efficiency, which is not that remarkable, an impor-
tant conceptual conclusion is drawn from this work. The standard Kubo
formula [6], as we already knew, does produce a proper first-order correc-
tion to equilibrium states when an additional potential is included into the
Hamiltonian. However, our work shows that it fails to describe the non-
equilibrium stationary states. If infinite-size systems are used as the cen-
tral system, there are ways to get around this conceptual problem. For
non-equilibrium stationary states in finite-size systems, the standard Kubo
formula must be replaced by a Kubo-like formula based on the Redfield
equation – the standard Kubo formula is no longer valid. The key difference
is that the standard Kubo formula uses Schrödinger’s equation and the sys-
tem is treated as isolated while in the new Kubo-like formula, the Redfield
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equation of an open system is used. Given that there are still many studies
of transport based on various forms of the standard Kubo formula, this is a
very important conclusion.

1.3.2 The BBGKY-like hierarchy

The second method mirrors the ideas of the well-known BBGKY hierarchy.
The original BBGKY hierarchy [68] is a set of coupled equations for equilib-
rium correlation functions (Green’s functions). For non-interacting systems,
the hierarchy is decoupled, meaning that the equation of a single-particle
Green’s function only depends on other single-particle Green’s functions,
leading to a closed system of equations. Using Wick’s theorem, which holds
for correlation functions of non-interacting systems, higher order n-particle
Green’s functions can then be constructed from the single-particle Green’s
functions. However, when there are interactions in the system, equations for
all orders of Green’s functions are coupled together. Fortunately, other ap-
proximations can be used to truncate the hierarchy and then one solves the
truncated hierarchy. These approximations can be performed in such a way
that they are equivalent to the diagrammatic perturbation theory [18, 69].

Here, we extend the same approach to non-equilibrium stationary states.
A BBGKY-like hierarchy is derived from the Redfield equation. We find
again that for non-interacting systems, the equations decouple and a similar
Wick’s theorem can be proved. All equations are coupled together for inter-
acting systems. Two further approximations are introduced to truncate the
hierarchy. The first one is based on the known equilibrium distribution of the
interacting system. The second one is based on the cluster expansion [69]:
the observation that higher-order Green’s functions can be constructed from
the lower-order ones through Wick’s Theorem and an additional correlation
term. Ignoring these correlation terms at a certain order leads to a trunca-
tion of the hierarchy at the corresponding order.

Our tests of the two approximations for small systems, where exact solu-
tions needed for comparisons are also possible, indicate that they have very
good accuracy. Moreover, they can be systematically improved by going to
higher orders in the truncation schemes. The complexity of this approach
scales only like polynomials of N , not d, therefore this is a huge improvement
of the efficiency.

8
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1.3.3 The general Fokker-Planck equation in the
coherent-state representation

The third method we propose is to map and solve the Redfield equation
in the coherent-state representation of quantum states [70, 71]. Consider a
simple harmonic oscillator for example. The set of all coherent states |ξ〉,
which are eigenvectors of the annihilation operator a |ξ〉 = ξ |ξ〉, provides an
overcomplete basis for quantum states. Expanding a density matrix in such
a basis results in a “distribution” function P (ξ) over the complex plane C.
Here we use quotation marks because of the possibility that P (ξ) could be
a negative or even complex number. In this way, creation and annihilation
operators become differential operators, and the Redfield equation becomes
a stochastic differential equation of the distribution function over CN for
a general coupled interacting system of N harmonic oscillators. Instead of
dealing with the huge size of the linear system, like with the direct meth-
ods, now we need to solve an N -dimension stochastic differential equation,
which generally can be simulated classically. For non-interacting systems, in
fact, the equation can be solved analytically. We have obtained analytical
expressions of non-equilibrium stationary states and compared them to the
exact solutions. We find perfect agreement, as expected.

For interacting systems, once the classical simulations are performed, the
same comparisons can be done. The number of variables increases linearly
with the system size so this method is capable of looking at very large
systems. A similar procedure [72–74] has been proposed and implemented
for the study of equilibrium and pure dynamical systems. There the method
is applied successfully for bosonic systems with roughly N = 106 modes [75].
In a way, our method can be regarded as an extension of that method to the
study of non-equilibrium stationary states. Although this extension involves
additional technical difficulties, its efficiency remains comparable to that
of its counterpart for the study of equilibrium states and pure dynamical
processes.

1.3.4 Thermal conductance of spin chains

The physical question we discuss using this open-system approach is the
validity of Fourier’s Law of heat conduction,

jh = −κ∇T, (1.4)

where jh is the heat current density, T is the local temperature and κ is
the heat conductivity. This phenomenological law is found to be obeyed by
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jh

TL TR

Figure 1.1: Sketch of a typical setup of heat conduction: left and right baths
have different temperatures and the conductor is a quasi 1D system. jh is
the current density on the conductor. It is usually assumed that there is a
linearly decreasing temperature profile on the conductor.

macroscopic systems, when measured experimentally in set-ups such as the
one sketched in Fig. 1.1.

The derivation of the law from the microscopic equation has been an
open question for many decades [34, 76]. The question has been investi-
gated in both classical [76] and quantum systems [34]. For classical systems,
a plausible relation between chaotic behavior and the validity of Fourier’s
Law (also referred to as normal transport), has been observed. But there
is still no consensus on the criteria required for a system to exhibit normal
transport. The situation is even less clear-cut for quantum systems. Most
experimental [19] and theoretical work [34] have focused on spin and energy
transport of spin chains or spin ladders. It has been conjectured, based on
investigations using the standard Kubo formula [34, 35], that integrability
is the criterion for anomalous conductivity. Other studies based on differ-
ent approaches, however, reach different conclusions. For example, it has
been suggested that the existence of gap leads to anomalous transport [77]
and also that spin transport could be qualitatively different from energy
transport [59]. Experimental results on integrable systems range too from
anomalous conductance [78–80] to normal conductance [81].

Most of the previous studies use the standard Kubo formula [34, 44, 82].
Some are based on the local-operator Lindblad equation [56, 59] and some
are based on the Redfield equation [36, 37, 83]. However, the spin systems
studied via the Redfield equation are either non-interacting (and thus triv-
ially integrable) or non-integrable. We denote, for example, the XY chains
as non-interacting since via Jordan-Wigner transformation [84] they can
be mapped to systems of free fermions. In the same sense we regard the
integrable Heisenberg chains to be interacting since by the same transfor-
mation the resulting fermionic systems are interacting. Anomalous trans-
port was found for (trivially) integrable systems and normal transport for
non-integrable systems. Disordered spin systems, which are non-integrable,
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have also been investigated and found to have normal transport [37]. Prior
to our work, there were no integrable interacting systems investigated via
the Redfield equation. We apply the Redfield equation to investigate the
energy transport of spin 1/2 chains. We also find anomalous transport for
XY chains, but normal transport for XXZ chains, which are integrable but
interacting. Therefore, we conclude that integrability does not necessarily
imply anomalous transport. We then investigate a wider class of systems
and conjecture another criterion: interacting systems have normal transport.
The reliability of this conjecture needs to be checked further.

1.4 Summary

In summary, this chapter has presented a brief synopsis of the challenges
that we are trying to address in this thesis, and the directions we have used
to achieve these goals. The rest of the thesis will now discuss each of these
issues in detail.
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Chapter 2

The projector technique and
the Redfield equation

2.1 Outline

In this chapter we review the projector technique for central systems coupled
to single or multiple baths, and illustrate its application to small systems
with only a few degrees of freedom, where the equations can be solved di-
rectly. The challenge it faces when applied to large systems, and our solution
to this challenge, will be the topics of other chapters.

This chapter is organized as follows. Section §2.2 contains a brief re-
view of an open system’s dynamics based on the system-bath scenario, as a
preparation for our method. In Section §2.3, we discuss how systems cou-
pled to a single bath, or to multiple baths held at the same temperature and
the same chemical potential, arrive at thermal equilibrium. As examples,
the Redfield equations of both a single-mode central system and a two-site
central system are solved to illustrate the general procedure. Besides the
Redfield equation, there are other various forms of open-system quantum
master equations. Usually they can be regarded as generalizations of the
Redfield equation of a single-mode central system. Two such equations,
which are widely used in literature, are presented in Section §2.4. Then,
in Section §2.5 we generalize the Redfield equation to systems coupled to
two or more baths of different temperatures but with the same chemical
potential, and discuss their heat conductance. The method is also valid for
electrical and spin transport, where the chemical potentials of baths could
also be different.

2.2 The effective equation of motion for open
systems

In this section we derive a general effective equation of motion for a central
system coupled to a single bath, starting from the Schrödinger’s equation for
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the total composite system. A similar derivation can be found in Refs. [1, 2,
51, 85]. Unless otherwise stated, in this thesis we use ~ = 1, kB = 1, c = 1.

Consider a system S interacting with a single bath/reservoir B. In the
Schrödinger picture, the Liouville equation for the evolution of the density
matrix of the total closed quantum system S +B is:

i
∂ρ̂T (t)

∂t
=

[
Ĥ, ρ̂T (t)

]
≡ L̂ρ̂T (t) . (2.1)

Here we denote the density matrix of the total composite system as ρ̂T and
the reduced density matrix of the central system (the bath) as ρ̂ (ρ̂B),

ρ̂ (t) = trB (ρ̂T (t)) , (2.2)

ρ̂B (t) = trS (ρ̂T (t)) , (2.3)

where trB (trS) stands for the operation of partial trace over the bath (the
central system) degrees of freedom.

The total Hamiltonian has the generic form:

Ĥ = Ĥ0 (S,B) + V̂ (S,B) , (2.4)

where
Ĥ0 (S,B) = ĤS (S)⊗ Î (B) + Î (S)⊗ ĤB (B) (2.5)

describes the system, respectively the bath, and

V̂ (S,B) =
∑
i

L̂i (S)⊗ F̂i (B) (2.6)

describes their interactions, with L̂i (S) and F̂i (B) being system, respec-
tively bath operators. Î (B) and Î (S) are the identity operators in the
Hilbert space of the bath and the central system, respectively.

If we are interested only in the properties of S, we call it an open quantum
system. Typically, we need to calculate the ensemble average of physical
quantities depending on operators acting on S only,

〈A〉 = tr
(
[ÂS ⊗ Î (B)]ρ̂T

)
. (2.7)

This can be trivially rewritten as:

〈A〉 = trS
(
ÂS ρ̂

)
. (2.8)

Therefore, it is convenient to try to find ρ̂ (t) directly, and avoid solving for
the total density matrix ρ̂T (t), which is a much more complicated problem
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2.2. The effective equation of motion for open systems

due to the significant increase in the number of degrees of freedom. Instead
we are looking for the evolution equation of the reduced matrix density in
a form similar to Eq. (2.1):

∂ρ̂ (t)

∂t
= L̂ ρ̂ (t) , (2.9)

but now L̂ is obviously neither
[
Ĥ, ·

]
of the whole system nor

[
ĤS , ·

]
of the

central system only. The task of this section is to derive the proper Liouville
operator starting from knowledge of the total Hamiltonian Ĥ.

There are two main types of approaches to discuss the dynamics of an
open system: based on dynamic variables or based on density matrices.
The first approach uses equations of motion for dynamic variables such as
X̂, P̂ etc. The dynamic variables of the bath are integrated out, resulting in
noise-sources terms in the Langevin-type equations for the dynamic variables
of the system. If one can solve these Langevin equations, the full time
dependence of the central system is known. From a quantum mechanics
point of view, this approach is similar to the Heisenberg picture.

The second approach focuses on distribution functions in the phase space
of the system, such as ρ (x, p) for classical systems and the density matrix
ρ̂ for quantum systems. Equations of motion are generated for them, the
bath is projected out, and then the equation for the reduced density matrix
is solved. From a quantum mechanics point of view, this approach is more
similar to the Schrödinger picture.

We will use the latter approach. In this section we summarize the general
formalism of this method. There are two well-known techniques to derive
the equation of motion of the reduced density matrix, namely the projector
operator technique and the non-correlation approximation. We discuss the
first one in reasonable detail and then shortly review the second one.

2.2.1 The projector operator technique and the reduced
Liouville equation

One way to derive the unknown L̂ in Eq. (2.9) is through the technique
of projection. We define the projector operator on the Hilbert space of the
total system S +B, P : H → H, such that

P (ρ̂T ) , trB (ρ̂T )⊗ ρ̂eqB = ρ̂⊗ ρ̂eqB (2.10)

where ρ̂eqB is the density matrix of the isolated bath in equilibrium, although
this requirement could be relaxed. It is easy to verify that P is a projector,
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i.e. that PP = P. We denote Q = I−P, and rewrite the equation of motion
for the total system, Eq. (2.1), as:{

∂
∂tP ρ̂T (t) = PL̂P ρ̂T (t) + PL̂Qρ̂T (t)
∂
∂tQρ̂T (t) = QL̂P ρ̂T (t) +QL̂Qρ̂T (t)

(2.11)

The second equation is integrated formally and its solution is substituted
into the first equation, to obtain:

∂

∂t
P ρ̂T (t) = PL̂P ρ̂T (t) + PL̂

∫ t

0
dτe(t−τ)QL̂QL̂P ρ̂T (τ) + PL̂etQL̂Qρ̂T (0) .

(2.12)
If we start from the reasonable initial condition

ρ̂T (0) = ρ̂ (0)⊗ ρ̂eqB , (2.13)

then
Qρ̂T (0) = 0 (2.14)

and the last term vanishes identically. Let LS ,LB,LV be the Liouville op-
erators corresponding respectively to ĤS (S) , ĤB (B) and V̂ (S,B). Then,

L̂ = L̂S + L̂B + L̂V , L̂0 + L̂V . (2.15)

Since L̂B ρ̂
eq
B = 0, we can rewrite the dynamic equation as

∂

∂t
ρ̂ (t)⊗ ρ̂eqB = PL̂S

[
ρ̂ (t)⊗ ρ̂eqB

]
+ PL̂1

[
ρ̂ (t)⊗ ρ̂eqB

]
(2.16)

+PL̂
∫ t

0
dτe(t−τ)QL̂QL̂

[
ρ̂ (t)⊗ ρ̂eqB

]
. (2.17)

The second term is identically zero if we require that for any eigenstate in the
bath’s Hilbert space, the expectation value of the bath operators involved
in the bath-system coupling [see Eq. (2.6)] vanishes:

〈b| F̂i (B) |b〉 = 0. (2.18)

In this case, we have:

i 〈b| L̂1

[
ρ̂ (t)⊗ ρ̂eqB

]
|b〉 =

∑
i

〈b|
[
L̂i (S)⊗ F̂i (B) , ρ̂ (t)⊗ ρ̂eqB

]
|b〉

=
∑
i

(
L̂i (S) ρ̂ (t) 〈b| F̂i (B) ρ̂eqB |b〉 − ρ̂ (t) L̂i (S) 〈b| ρ̂eqB F̂i (B) |b〉

)
= 0
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showing that indeed, PL̂V P = 0. This condition, which is satisfied for most
types of couplings, is not however necessary. If it is not obeyed, there will be

a term of the form
∑

i,b
e−βEb

Z

〈
b
∣∣∣F̂i

∣∣∣ b〉 [
L̂i, ·

]
, which can be added to L̂S .

It follows that this assumption is not essential, although all the coupling
Hamiltonians we study satisfy it. With these assumptions and after tracing
out the bath degrees of freedom, we find that:

∂

∂t
ρ̂ (t) = L̂S ρ̂ (t) + trB

{
PL̂

∫ t

0
dτe(t−τ)QL̂QL̂P ρ̂T (t)

}
. (2.19)

Subject to the two assumptions mentioned above, this equation is exact.
Clearly, all the effects of the bath on the system’s dynamics are contained
in the second term on the right-hand side.

This term can be further simplified. One can verify that

QL̂P = QL̂0P +QL̂V P = QL̂V P = −PL̂V P + L̂V P = L̂V P (2.20)

where the second assumption has been invoked again. Now we use the first
essential assumption, replacing:

e(t−τ)QL̂ → e(t−τ)QL̂0 . (2.21)

This is valid when the system-bath interaction is weak, since, as shown in
the following, it is equivalent to second order perturbation in the “coupling
strength” between system and bath. This follows because we can then sim-
plify:

e(t−τ)QL̂0 = e(t−τ)(I−P)L̂0 = e(t−τ)(L̂0−PL̂0) = e(t−τ)L̂0 , (2.22)

where we make use of PL̂0 = PL̂0P + PL̂0Q = 0. Therefore we obtain:

∂

∂t
ρ̂ (t) = L̂S ρ̂ (t) + trB

{
L̂V

∫ t

0
dτe(t−τ)L̂0L̂V ρ̂ (τ)⊗ ρ̂eqB

}
, (2.23)

where indeed the second term is of second order in the interaction V̂ . This
can be further simplified in the interaction picture , where we define

ρ̂I (t) = eiĤStρ̂ (t) e−iĤSt, (2.24a)

L̂I
j (t) = eiĤStL̂je

−iĤSt, (2.24b)

F̂ I
j (t) = eiĤBtF̂je

−iĤBt. (2.24c)
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In this case, the first term cancels out, and the dynamic equation becomes:

∂ρ̂I (t)

∂t
= −

∑
jl

∫ t

0
dτ

{[
L̂I
j (t) , L̂

I
l (t− τ) ρ̂I (t− τ)

]
Gjl (τ)

−
[
L̂I
j (t) , ρ̂

I (t− τ) L̂I
l (t− τ)

]
Glj (−τ)

}
(2.25)

where

Gjl (τ) = trB
(
F̂ I
j (τ) F̂ I

l (0) ρ̂eqB

)
. (2.26)

are Green’s functions which depend only on the bath characteristics and can
be calculated directly.

Depending on the specific form of the Hamiltonian, Eq. (2.25) may or
may not have a unique long-term stationary solution. For example, it may
oscillate between several metastable states. The exact criteria guaranteeing
the existence of such a steady-state are not known. Finding such criteria
would be an interesting topic for further research. In the following, we take
the pragmatic approach and assume that if a stationary steady-state solution
has been found, then it is unique.

Now comes our second essential assumption, the Markov approximation:

ρ̂I (t− τ) ≈ ρ̂I (t) for t� τc, (2.27)

where τc is the characteristic relaxation time of Gjl (τ) (i.e., of the bath).
Since in this thesis we investigate the steady-state solution when t→ ∞, the
Markov approximation is likely justified. Using the influence functional tech-
nique, similar but more complicated equations can be derived if the Markov
approximation is relaxed [47–50, 86]. These more complicated equations are
necessary in the study of transient process. We believe that for the purpose
of study of stationary states, the Markov approximation is accurate enough.

With this final approximation, we find the desired equation of motion
for the reduced density matrix:

∂ρ̂I (t)

∂t
= −

∑
jl

∫ t

0
dτ

{[
L̂I
j (t) , L̂

I
l (t− τ) ρ̂I (t)

]
Gjl (τ)

−
[
L̂I
j (t) , ρ̂

I (t) L̂I
l (t− τ)

]
Glj (−τ)

}
. (2.28)

It can be transformed back to the Schrödinger picture,

∂ρ̂ (t)

∂t
= −i [HS , ρ̂ (t)]−

∑
jl

∫ t

0
dτ

{[
L̂j , L̂

I
l (−τ) ρ̂ (t)

]
Gjl (τ)

−
[
L̂j , ρ̂ (t) L̂

I
l (−τ)

]
Glj (−τ)

}
. (2.29)
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This equation can also be projected in the eigenbasis of HS , denoted as
{|s〉} such that HS |s〉 = Es |s〉. In this case, the effective equation of motion
becomes

d

dt
ρIs′s (t) =

∑
m,n

Rs′smn (t) ρ
I
mn (t) , (2.30)

with

Rs′smn = −ei∆Es′smnt

·

[∑
k

δsnΓ
+
s′kkm − Γ+

nss′m − Γ−
nss′m +

∑
k

δs′mΓ−
nkks

]
, (2.31)

where
∆Es′smn = ES

s′ −ES
s + ES

n − ES
m (2.32)

and

Γ+
mkln (t) =

∑
ij

〈m| L̂i |k〉 〈l| L̂j |n〉
∫ t

0
e−i(ES

l −ES
n)τGij (τ) dτ (2.33)

and Γ−
mkln (t) =

(
Γ+
nlkm (t)

)∗
. The above effective equation of motion is

sometimes called a quantum master equation. If we focus only on the diag-
onal terms for ρIss (t), then we obtain the secular quantum master equation,
which requires the so-called secular approximation [1] in order to be consis-
tent with Fermi’s Golden Rule. The secular approximation is to ask that

ES
s′ − ES

s + ES
n − ES

m = 0, (2.34)

so as to eliminate the explicit time dependence of the right hand side of Eq.
(2.31). Then, finally,

d

dt
ρIss (t) =

∑
m

Wsmρ
I
mm (t)−

∑
m

Wmsρ
I
ss (t) , (2.35)

where Wsm = Γ+
mssm + Γ−

mssm. This is now consistent with Fermi’s Golden
Rule. While there is a considerable body of work based on such secular
quantum master equations, we choose to work directly with the full effective
equation of motion Eq. (2.28).
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2.2.2 An alternative derivation: the non-correlation
approximation

This is a different way to derive the above equation of motion for the reduced
density matrix, using the so-called non-correlation approximation. Suppose
that both ĤS and ĤB are solvable, and their eigenstates are respectively
{|s〉} for ES

s and {|b〉} for EB
b . Then, a complete basis for the total Hilbert

space can be chosen as {|s〉 |b〉}.
In the interaction picture

∣∣ψI (t)
〉
= ei(ĤS+ĤB)t |ψ (t)〉, the time evolu-

tion of the operators describing the coupling is

L̂I
i (t) = eiĤStL̂i (t) e

−iĤSt (2.36)

and

F̂ I
i (t) = eiĤBtF̂i (t) e

−iĤBt. (2.37)

The dynamical equation of the whole system is:

i
∂ρ̂IT (t)

∂t
=

[
V̂ I (t) , ρ̂IT (t)

]
. (2.38)

Integrating this formally and substituting the resulting expression for ρ̂I in
the right-hand side of Eq. (2.38), we obtain:

∂ρ̂IT (t)

∂t
= −i

[
V̂ I (t) , ρ̂IT (0)

]
−

∫ t

0
dτ

[
V̂ I (t) ,

[
V̂ I (τ) , ρ̂IT (τ)

]]
. (2.39)

Integrating out the bath, this becomes:

∂ρ̂I (t)

∂t
= −itrB

([
V̂ I (t) , ρ̂IT (0)

])
−

∫ t

0
dτtrB

([
V̂ I (t) ,

[
V̂ I (τ) , ρ̂IT (τ)

]])
, (2.40)

which is still exact. Now we begin to introduce several approximations.
First, we again assume

〈b| F̂i (B) |b〉 = 0, (2.41)

so that the first term in Eq. (2.40) vanishes. As before, this is not an
essential assumption. Second , we also assume,

ρ̂IT (τ) = ρ̂I (τ)⊗ ρ̂IB (τ) , (2.42)
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2.2. The effective equation of motion for open systems

such that the second term in Eq. (2.40) can be separated and simplified.
This is the essential approximation. In fact this is stronger than the corre-
sponding approximation, Eq. Eq. (2.13), used in the previous section, where
this factorization is assumed to be true only for the initial state. Third, we
take,

ρ̂IB (τ) = ρ̂eqB =
1

ZB
e−βĤB . (2.43)

With these assumptions, we get a simplified dynamic equation for the re-
duced density matrix identical to Eq. (2.25). If we further apply the Markov
condition, we arrive at the same effective equation of motion as in Eq. (2.28).

2.2.3 The quantum master equation in terms of creation
and annihilation operators

From now on, we will work in the Schrödinger picture and directly deal
with the reduced density matrix of the central system. In this thesis, we
will mostly use the second quantization language. In terms of creation and
annihilation operators, Eq. (2.28) can be simplified further. Let us now
derive such a simplified version for a general central system, whose νth site
is coupled to the νth bath with bath parameters Tν , µν and coupling constant
Vk,ν and λ,

HS = H
(
aj , a

†
j

)
, (2.44a)

HBν =
∑
k

ων (k) b†k,νbk,ν , (2.44b)

HSB = λ
∑
k,ν

(
Vk,νa

†
νbk,ν + h.c.

)
. (2.44c)

Here H
(
aj , a

†
j

)
can be any function of aj and a†j . λ refers to the strength

of the coupling between the central system and the baths. It could be
absorbed into the coupling coefficients Vk,ν but we separate it and use it as
a relatively small dimensionless number for bookkeeping purpose. Here we
assume that every site connected to a bath, is connected to its own bath. If
two sites happen to share a bath, then the formula we derive below needs
to be adjusted. First we identify

L
(1)
k,ν = λVk,νaν , F

(1)
k,ν = b†k,ν ;L

(2)
k,ν = λV ∗

k,νa
†
ν , F

(2)
k,ν = bk,ν (2.45)
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2.2. The effective equation of motion for open systems

and note that the only non-vanishing bath Green’s functions are:

G1,2
k,ν,k,ν′ (τ) = trB

(
F

(1)
k,ν (τ)F

(2)
k,ν′ (0) ρB

)
= 〈nk,ν〉 eiων(k)τδν,ν′ ,

(2.46a)

G2,1
k,ν,k,ν′ (τ) = trB

(
F

(2)
k,ν (τ)F

(1)
k,ν′ (0) ρB

)
= 〈1− nk,ν〉 e−iων(k)τδν,ν′ .

(2.46b)

The δν,ν′ comes from the assumption of independent baths for each site,
which means that Green’s functions among operators belonging to baths
coupled to different sites are zero. By definition,

〈nk,ν〉 ≡ 〈n (ων (k) , Tν , µν)〉 =
(
e

ων (k)−µν
Tν − 1

)−1

(2.47)

is the average particle number in state k in bath ν. For simplicity of notation,
〈nk,ν〉 will be denoted as nk,ν whenever it is safe to do so.

After plugging these Green’s functions into Eq. (2.28), we arrive at a
quantum master equation

∂ρ(t)

∂t
= −i[HS , ρ(t)]

−λ2
∑
ν

{[
a†ν , m̂νρ(t)

]
+

[
aν , ˆ̄mνρ(t)

]
+ h.c.

}
, (2.48)

with operators m̂ and ˆ̄m defined as follows:

m̂ν =
∑
k

|Vk|2
∫ ∞

0
dτaν (−τ) e−iων(k)τ 〈1− nk,ν〉 , (2.49a)

ˆ̄mν =
∑
k

|Vk|2
∫ ∞

0
dτa†ν (−τ) eiων(k)τ 〈nk,ν〉 . (2.49b)

Here aν (τ) = eiHStaνe
−iHSt is expressed in the Heisenberg picture. Note

that we have also changed the integral limit from t to ∞. Again this is
reasonable only if the stationary solution itself is of interest, not the whole
evolution process. This quantum master equation in creation and annihila-
tion operators is the central equation of this chapter and will be used later
throughout the whole thesis. Eq. (2.48) is sometimes called the Redfield
equation [52, 53, 87].

In some cases, it is convenient to use the eigenstates of HS as a basis,
{|En〉}. In that case, using element-wise products in this basis, the expres-
sions of the operators m̂ and ˆ̄m can be rewritten as

m̂ν = aν · Σν , ˆ̄mν = a†ν · Σ̄ν , (2.50)
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2.3. Relaxation towards thermal equilibrium

where

Σν = π
∑
m,n

|m〉 〈n| [1− n (En − Em, Tν , µν)]Jν (En − Em) , (2.51a)

Σ̄ν = π
∑
m,n

|m〉 〈n|nν (Em − En, Tν , µν) Jν (Em − En) , (2.51b)

and

Jν (ε) =
∑
k

|Vk|2 δ(ε− ων(k)) (2.52)

is usually called the spectrum density function [36, 48] of the bath ν.

2.3 Relaxation towards thermal equilibrium

We first apply this general procedure to the simplest example — a single-site
fermionic system coupled to a bath — and show that the system evolves to
the correct thermal equilibrium as t → ∞. We then briefly investigate a
corresponding two-site system.

2.3.1 One-site open system

Consider a one-state fermionic system in a strong magnetic field, describing
for instance a single quantum dot, defined by a Hamiltonian:

HS = εa†a (2.53)

where a, a† are fermionic operators. The system is coupled to a single bath
(ν = 1 only), which is regarded as an ensemble of fermions with fixed T
and µ, so that both particles and energy are exchanged. Using the general
quantum master equation Eq. (2.48), we have

∂

∂t
ρ = −i

[
εa†a, ρ

]
− λ2

{[
a†, m̂ρ

]
+

[
a, ˆ̄mρ

]
+ h.c.

}
, (2.54)

where

m̂ = πJ (ε) [1− n(ε)] a, (2.55a)

ˆ̄m = πJ (ε)n(ε)a†, (2.55b)

and n(ε) is shorthand for n(ε, T, µ) =
(
e

ε−µ
T − 1

)−1
, the average number of

particles with energy ε in the bath (since there is a single bath, there is no
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2.3. Relaxation towards thermal equilibrium

B

S

Figure 2.1: Sketch of a one-site system coupled to a heat bath.

need to explicitly write down Tν and µν everywhere). J (ε) can be defined
accordingly for this specific system using Eq. (2.52).

Now we can solve the dynamical equation and check the stationary solu-
tion. The density matrix of the above system can be written in the general
form:

ρ (t) =
1 + p (t)

2
|0〉 〈0|+ 1− p (t)

2
|1〉 〈1|+ q (t) |0〉 〈1|+ q∗ (t) |1〉 〈0| , (2.56)

so that the trace is preserved. Then we get evolution equations for these
parameters from the Redfield equation:

d

dt
p (t) = 2 (1− 2n(ε))− 2p (t) , (2.57a)

d

dt
q (t) = −q (t) . (2.57b)

This has a stationary solution, independent of the initial state:

p (∞) = 1− 2n(ε) =
eβ(ε−µ) − 1

eβ(ε−µ) + 1
, (2.58a)

q (∞) = 0, (2.58b)

which leads indeed to the expected equilibrium grand-canonical distribution

ρ(∞) =
1

e−β(ε−µ) + 1
|0〉 〈0|+ e−β(ε−µ)

e−β(ε−µ) + 1
|1〉 〈1| (2.59)

for the two-level system. Note that in this example, the value of λ itself is
irrelevant: this equilibrium state will be reached irrespective of the strength
of the coupling to the bath. As we show later, this is not true for non-
equilibrium stationary states, which depend on the details of the coupling
between the central system and the baths.
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2.3. Relaxation towards thermal equilibrium

1 2

Bath

Figure 2.2: Sketch of a two-site system coupled to a heat bath.

2.3.2 Two-site open system

Let us now consider a two-site fermionic system coupled to one heat bath,
see Fig. 2.2. The system’s Hamiltonian is taken to be a simple hopping
Hamiltonian:

HS = −ε
(
a†1a2 + a†2a1

)
, (2.60)

and we assume that only site 1 is coupled to the bath, so that:

V =
∑
k

(
λVka1b

†
k + λV ∗

k a
†
1bk

)
. (2.61)

Using the general effective equation of motion Eq. (2.48), we arrive at

d

dt
ρ = −i [HS , ρ]− λ2

{[
a†1, m̂1ρ

]
+

[
a1, ˆ̄m1ρ

]
+ h.c.

}
, (2.62)

where

m̂1 =
πJ (−ε) [1− n (−ε)]

2
(a1 + a2) +

πJ (ε) [1− n (ε)]

2
(a1 − a2) , (2.63a)

ˆ̄m1 =
πJ (−ε)n (−ε)

2

(
a†1 + a†2

)
+
πJ (ε)n (ε)

2

(
a†1 − a†2

)
, (2.63b)

and J (±ε) can be calculated similarly as in Eq. (2.52) but now for the
eigenenergies ±ε. Again, for simplicity we assume J(±ε) = 1. Note that
when ε = 0, the operators m̂1 and ˆ̄m1 become

m̂1 = J (0) [1 + n (0)] a1, (2.64a)

ˆ̄m1 = J (0)n (0) a†1, (2.64b)
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2.3. Relaxation towards thermal equilibrium

in agreement with results in the previous section. This shows that only if ε
is zero, then the operators m̂1 and ˆ̄m1 depend only on a1 and a

†
1. Otherwise,

they also involve the creation and annihilation operators for other sites in the
system (here, site 2). In fact, unless a†ν happens to be the creation operator
of an eigenmode of HS , which is generally not the case, ˆ̄mν involves other
operators than aν , a

†
ν . We will revisit this issue in Section §2.4.

The eigenmodes of this Hamiltonian are,

HS = −εa†+a+ + εa†−a−, (2.65)

where

a± =
a1 ± a2√

2
. (2.66)

In terms of occupation states of these eigenmodes |n+n−〉, eigenstates are
|00〉, |10〉, |01〉, |11〉 with eigenvalues respectively ε1 = 0, ε2 = −ε, ε3 = ε,
ε4 = 0. A density matrix in this basis

ρ =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 (2.67)

can be cast into a 16-dimensional vector,

P = [p11, p12, · · · , p44]T . (2.68)
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2.3. Relaxation towards thermal equilibrium

In this basis, operators are represented by:

a1 =
1√
2


0 1 1 0
0 0 0 1
0 0 0 −1
0 0 0 0

 , (2.69)

a2 =
1√
2


0 1 −1 0
0 0 0 −1
0 0 0 −1
0 0 0 0

 , (2.70)

m̂1 =
π√
2


0 1− n(−ε) 1− n(ε) 0
0 0 0 1− n(ε)
0 0 0 −1 + n(−ε)
0 0 0 0

 , (2.71)

ˆ̄m1 =
π√
2


0 0 0 0

n(−ε) 0 0 0
n(ε) 0 0 0
0 n(ε) −n(−ε) 0

 . (2.72)

Plugging the above operators and density matrix into Eq. (2.62), we can
derive the explicit form of matrix Γ and rewrite Eq. (2.62) in the following
form,

d

dτ
P = ΓP, (2.73)

where the matrix Γ has dimension 16×16, or generally 4N×4N for an N -site
spinless fermionic system.

Fortunately, since we are only interested in equilibrium states in this
section, we know that the off-diagonal elements of the equilibrium density
matrices will vanish. Therefore, we work with P dia = [p11, p22, p44, p44]

T in
this section and derive and solve only its evolution equation. In this case, the
matrix Γ can also be reduced to a matrix Γdia. Using the above operators
a1, a

†
1, m̂1, and ˆ̄m1, we find

Γdia = λ2π


−n(−ε)− n(ε) 1− n(−ε) 1− n(ε) 0

n(−ε) n(−ε)− n(ε)− 1 0 1− n(ε)
n(ε) 0 n(ε)− n(−ε)− 1 1− n(−ε)
0 n(ε) n(−ε) n(ε) + n(−ε)− 2

 ,
(2.74)
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21

Left bath Right bath

Figure 2.3: Sketch of a two-site system coupled to two heat baths.

and the reduced equation becomes

d

dτ
P dia = ΓdiaP dia. (2.75)

A general time-dependent solution of Eq. (2.75) with initial condition P dia
0

is

P dia (τ) = eΓ
diaτP dia

0 . (2.76)

It converges to a long term stationary state only when all eigenvalues of
Γdia are non-positive. Its stationary state is the eigenvector of Γdia with
eigenvalue equal to zero,

ΓdiaP dia (∞) = 0. (2.77)

We verified that Γdia indeed only has one zero eigenvalue, and that its cor-
responding eigenvector P dia (∞) leads to the proper thermal equilibrium
state,

P dia (∞) =
1

Z

[
1, eβ(µ+ε), eβ(µ−ε), eβ2µ

]T
, (2.78)

where Z = 1 + eβ(µ+ε) + eβ(µ−ε) + eβ2µ.
Up to this point, we have illustrated the general procedure for a system

coupled to one bath and confirmed that its stationary state is the expected
thermal equilibrium. A straightforward extension is to consider a system
coupled to multiple baths, for example different sites in the system are locally
coupled to different baths. In fact, our general formula Eq. (2.48) has
already been derived to be applicable for such situations. The only change
to be made is to allow every bath to have its own operators m̂ν and ˆ̄mν .
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2.4. Various other extensions

Specifically, if as sketched in Fig.2.3, we couple site 2 to a bath 2 with
the same bath parameters, then our effective equation of motion reads:

d

dt
ρ = −i [HS , ρ]− λ2

{[
a†1, m̂1ρ

]
+

[
a1, ˆ̄m1ρ

]
+ h.c.

}
−λ2

{[
a†2, m̂2ρ

]
+

[
a2, ˆ̄m2ρ

]
+ h.c.

}
, (2.79)

where the additional operators are defined as

m̂2 =
π [1− n2 (−ε)]

2
(a1 + a2)−

π [1− n2 (ε)]

2
(a1 − a2) , (2.80a)

ˆ̄m2 =
πn2 (−ε)

2

(
a†1 + a†2

)
− πn2 (ε)

2

(
a†1 − a†2

)
. (2.80b)

Repeating the above calculation, we find the same stationary state.
It is now natural to ask what kind of stationary state will emerge if

the two baths have different parameters, for example different temperatures
and/or chemical potentials. Ideally this should be the non-equilibrium sta-
tionary state which can be used to calculate transport properties.1 We will
use examples of simple systems to investigate this question in §2.5. Before
that, however, we have a subtle issue to settle, in the next section.

2.4 Various other extensions of the single-site
quantum master equation

There are several forms of the effective equation of motion used in the lit-
erature. Besides the multi-bath Redfield equation derived above, a local-
operator Lindblad equation and a multi-mode quantum master equation
are also used quite often to study transport or relaxation processes. In this
section, we will introduce the latter two and discuss their limitations.

Another way to write Eq. (2.54) for a single-site system is:

∂

∂t
ρ = −i [HS , ρ]− J (ε)

{
(1− n(ε))

(
a†aρ+ ρa†a− 2aρa†

)
+n(ε)

(
aa†ρ+ ρaa† − 2a†ρa

)}
. (2.81)

1What we have argued above shows only that it is natural to link this state to the
non-equilibrium stationary state, since the proper equilibrium states are reached when
the system is coupled to unbiased baths. However, we note that this is not a real first-
principle derivation: thermal equilibrium of the baths has been explicitly assumed. The
question of establishing thermal equilibrium from only first principles is not the scope of
this thesis although many mathematicians and physicists are very much interested in this
issue.
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2.4. Various other extensions

It is very tempting to generalize the above form directly to multi-site systems
coupled to multiple local baths as follow,

∂

∂t
ρ = −i [HS , ρ]

−
∑
ν

Jν (εν)
{
(1− nν(εν))

(
a†νaνρ+ ρa†νaν − 2aνρa

†
ν

)
+nν(εν)

(
aνa

†
νρ+ ρaνa

†
ν − 2a†νρaν

)}
, (2.82)

i.e. as if each new bath adds the contribution it would if the site it is coupled
to was isolated from the rest of the central system. Here, εν is the on-site
energy of site ν and nν(εν) is the occupation number for a mode of energy
εν given the parameters of bath ν.

We call this simplified equation the local-operator Lindblad equation.
Because of its simplicity, it has been used often for the study of transport
properties [58, 59, 88, 89]. We have seen, however, that Eq. (2.48) or more
specifically Eq. (2.79) can not be cast into this form because the operator
m̂ν usually involves not only aν , but also the operators for all other sites aν′

through formulas that depend on the particularHs of the system. Therefore,
the two equations are different. The question, then, is whether the stationary
states of the two equations are qualitatively different, and if yes, whether the
solution of the local-operator Lindblad equation still captures most features
of the non-equilibrium stationary states properly? These questions have not
been answered yet. In this section, we will provide some preliminary results.

Before that, we also introduce the multi-mode quantum master equation
that arises from another extension of the Redfield equation for a single-
site system [70]. For multi-site systems, let us assume we can rewrite the
Hamiltonian as follows:

HS =
∑
q

ε (q) a†qaq, (2.83)

We further assume that each eigenmode of the system is coupled to its own
individual bath with temperature Tq:

V̂ = λ
∑
k,q

[
Vqkaq ⊗ b†q,k + h.c.

]
(2.84)

where creation and annihilation operators of bath q satisfy the fermionic
commutation relation, {bq,k, b†q′,k′} = δk,k′δq,q′ . Note that this is different
from our setup of Redfield equation, where some of the sites, not eigenmodes,
are coupled each to its own individual bath.
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2.5. Evolution towards a NESS

For this new setup, every eigenmode is independent so that the operators
m̂q and ˆ̄mq involve only aq and a†q. Therefore, from Eq. (2.48) the effective
equation of motion reads

d

dt
ρ = −i

∑
q

ε (q)
[
a†qaq, ρ

]
−
∑
q

Jq (ε (q))
{
(1− nq(ε (q)))

(
a†qaqρ+ ρa†qaq − 2aqρa

†
q

)
+nq(ε (q))

(
aqa

†
qρ+ ρaqa

†
q − 2a†qρaq

)}
, (2.85)

i.e. it is simply a sum over all eigenmodes, consisting of contributions similar
to those in Eq. (2.54). We call this equation the multi-mode quantummaster
equation. It has been used in quantum optics to study relaxation processes.

We should emphasize that the two equations Eq. (2.82) and Eq. (2.85)
are different from each other, except for a single-site system in which case
all three equations are the same. For example, for our two-site system, aν
in Eq. (2.82) refers to a1, a2 while aq in Eq. (2.85) refers to a± = a1±a2√

2
. In

the local-operator Lindblad equation a1, a
†
1 does not mix with a2, a

†
2, while

in the Redfield equation there are terms mixing them.
Next, we investigate the difference between these three equations: the

Redfield equation, the local-operator Lindblad equation and the multi-mode
quantum master equation. We will argue firstly that while the local-operator
Lindblad equation gives both wrong equilibrium states and wrong non-
equilibrium stationary states, it may lead to qualitatively correct results for
some physical quantities such as certain currents; and secondly that while
the proper equilibrium states can be found from the multi-mode quantum
master equation, it does not describe any proper non-equilibrium stationary
states. In order to do this, we begin by finding the “proper” non-equilibrium
stationary state from the Redfield equation of a two-site system coupled to
two baths. This solution is discussed in the next section.

2.5 Evolution towards a non-equilibrium
stationary state

In this section, we first solve the Redfield equation for a two-site system
locally coupled to two baths, and then compare it with solutions from the
local-operator Lindblad equation and the multi-mode quantum master equa-
tion. The general procedure presented in this section is the general method
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2.5. Evolution towards a NESS

underlying all the later work in this thesis. In a sense, all the later work
focuses either on the technical side of this procedure or on applications of
this procedure. Of course, these are non-trivial because solving the Redfield
equation directly for large systems is a difficult task.

2.5.1 Non-equilibrium stationary states from the Redfield
equation

We begin from Eq. (2.79). Note that when the bath parameters are different:
T1 6= T2 and/or µ1 6= µ2, unlike in the case of thermal equilibrium states,
the off-diagonal elements of the density matrix are no longer necessarily
zero. As a result, we need to find all the elements of the density matrix.
Correspondingly the matrix Γ has d4 = 28 elements. For such a large linear
system we have to solve the problem numerically. We are interested in its
stationary solution, i.e.

ΓP (∞) = 0. (2.86)

This can be solved by finding the eigenvector of L corresponding to the zero
eigenvalue. Or, it can also be solved as the solution of the following linear
system of equations,

Γ̄P (∞) = V , (2.87)

where V = [1, 0, · · · ]T and Γ̄ is defined by replacing the first row of Γ by the
normalization condition tr (ρ) = 1, i.e.

∑
j Pj∗d+j = 1 with our notation.

The advantage of this is that Γ is a singular matrix but Γ̄ is not. Therefore,
while Eq. (2.86) has to be treated as a computationally costly eigenvalue
problem, Eq. (2.87) is a non-singular system of linear equations that can be
solved more efficiently.

For simplicity of notation in later chapters, the above two equations
defining the non-equilibrium stationary states are also written as

Lρ (∞) = 0. (2.88)

and

L̄ρ (∞) = ν. (2.89)

Here instead of superoperator Γ, Γ̄ and supervector P,V , we use directly
the Liouvillian L, L̄ and matrix ρ, v, which are defined from mapping the
supervector P,V in the above supervector representation back into the usual
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2.5. Evolution towards a NESS

density matrix representation. These two sets of equations are equivalent,
but the later has simpler notation since it is still formulated in terms of the
Liouvillian and density matrices.

Let us summarize the general algorithm for this direct method:

1. Find all eigenvalues and eigenstates of HS , and express all the original
operators aν and a†ν in this basis of eigenstates;

2. Evaluate the correlation functions for every bath to calculate the ma-
trices Σν and Σ̄ν defined in Eq. (2.51);

3. From these, derive the expressions of the operators m̂ν and ˆ̄mν as in
Eq. (2.50);

4. Construct Γ or Γ̄ using Eq. (2.48) and the previous results;

5. Solve for the zero eigenvectors of Γ or the linear system defined by Γ̄
in Eq. (2.89).

Using this procedure we solve Eq. (2.79). Typical results are shown in
the Fig. 2.4 for the specific parameters ε = 1, λ = 0.1, µ1 = 0 = µ2, T1 =
T
(
1 + δ

2

)
, T2 = T

(
1− δ

2

)
, and T = 2.0. We have calculated the difference

between the general non-equilibrium stationary state ρ (∞) and the thermal
equilibrium ρEq (T ) at temperature T . The results are presented separately
for off-diagonal elements and diagonal elements,

ddiag =

√√√√√∑
j

(
ρjj − ρEq

jj

)2

∑
ij (ρij)

2 , doff =

√√√√√∑
i6=j

(
ρij − ρEq

ij

)2

∑
ij (ρij)

2 . (2.90)

The charge current operator is defined as

J = −ieε
(
a†1a2 − a†2a1

)
, (2.91)

and we also separate its expectation value into contributions from the diag-
onal and off-diagonal parts,

Jdiag =
∑
j

Jjjρjj , J
off =

∑
i6=j

Jjiρij . (2.92)

From Fig. 2.4(a) we see that compared to the diagonal part, the off-diagonal
elements of the non-equilibrium stationary states are relatively small but
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Figure 2.4: Density matrices for non-equilibrium stationary states are com-
pared to those of equilibrium states. In (a) ddiag and doff are plotted vs.
the temperature bias δ. Diagonal elements of the density matrices for non-
equilibrium stationary states are found to be quite different from those of
equilibrium states. The difference between off-diagonal elements of non-
equilibrium stationary states and equilibrium density matrices are much
smaller. Note that the off-diagonal elements of equilibrium density matrices
are zero always. (b) Charge currents, Jdiag and Joff , for the non-equilibrium
stationary states, are plotted vs. δ. We see that only the off-diagonal terms
of the density matrix contribute to the current.
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2.5. Evolution towards a NESS

non-zero. However, Fig. 2.4(b) shows that the diagonal part does not con-
tribute at all to the current, Jdiag = 0; the current comes entirely from the
off-diagonal part. So the seemingly small change in the off-diagonal part
makes a big qualitative difference: off-diagonal elements are essential to de-
scribe transport properties. This is not surprising since we know that if the
time-reversal symmetry is not broken, the eigenstates of HS do not support
currents, Jjj = 0.

Next, we will perform a comparison between stationary states from the
local-operator Lindblad equation/multi-mode quantum master equation and
these non-equilibrium stationary states obtained from the Redfield equation,
to see whether they agree or not.

2.5.2 Non-equilibrium stationary states from the
local-operator Lindblad equation and the multi-mode
quantum master equation

We have claimed before that the local-operator Lindblad equation leads to
wrong equilibrium states but possibly qualitatively correct non-equilibrium
stationary states, while the multi-mode quantum master equation gives
proper equilibrium states but not non-equilibrium stationary states. In this
section, we will confirm these statements by presenting results for the simple
example of a two-site fermionic system coupled to two baths hold at different
temperatures but the same chemical potential.

The Redfield equation for this system has been written down in Eq.
(2.79). Following the general form in Eq. (2.85) and Eq. (2.82), the local-
operator Lindblad equation and the multi-mode quantum master equation
for this specific system are, respectively,

∂ρL

∂t
= −i[HS , ρ

L]− λ2π
{
〈1 + n (0, T1, µ1)〉

[
a†1, a1ρ

L
]

+ 〈n (0, T1, µ1)〉
[
a1, a

†
1ρ

L
]

+ 〈1 + n (0, T2, µ2)〉
[
a†2, a2ρ

L
]

+ 〈n (0, T2, µ2)〉
[
a2, a

†
2ρ

L
]
+ h.c.

}
. (2.93)
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and

∂ρM

∂t
= −i[HS , ρ

M ]− λ2π
{
〈1 + n (−ε, T, µ)〉

[
a†+, a+ρ

M
]

+ 〈n (−ε, T, µ)〉
[
a+, a

†
+ρ

M
]

+ 〈1 + n (ε, T, µ)〉
[
a†−, a−ρ

M
]

+ 〈n (ε, T, µ)〉
[
a−, a

†
−ρ

M
]
+ h.c.

}
, (2.94)

where n (ε, T, µ) is the average particle number in state with energy ε in
a bath with temperature T and chemical potential µ. For the multi-mode
quantum master equation, in which every eigenmode — not every site — is
treated independently, it is impossible to incorporate the local coupling (the
fact that only certain local sites couple to their own individual local baths),
so we have just set all Tq = T . This makes the multi-mode quantum master
equation not applicable to calculation of non-equilibrium stationary states.
We will find so in the following numerical study.

Following a similar procedure like in the last section, we solve for the
stationary states, ρL (∞) and ρM (∞). We compare them against the non-
equilibrium stationary states of the Redfield equation, ρR (∞) using the
following measure for distances:

dAB =

√√√√√√
∑

i,j

(
ρAij − ρBij

)2

∑
ij

(
ρBjj

)2 . (2.95)

Typical results are shown in Fig. 2.5. We see that the difference between
the multi-mode quantum master equation and the Redfield equation is rela-
tively small compared to the difference between the local-operator Lindblad
equation and the Redfield equation. At equilibrium (δ = 0), the multi-mode
quantum master equation and the Redfield equation lead to the same sta-
tionary state, which is of course the thermal equilibrium. The local-operator
Lindblad equation is quite different from the Redfield equation for all values
of δ, and in particular it fails to predict the proper thermal equilibrium for
unabiased baths. It can be shown that this is always the case, even for more
general systems.

However, we cannot discard the local-operator Lindblad equation on this
basis, when analyzing transport, since we just argued that transport is re-
lated only to off-diagonal matrix elements. Fig. 2.5(b) shows that while
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Figure 2.5: ρL (∞) and ρM (∞) are compared with ρR (∞). In (a) we plot dLR
and dMR vs. the temperature bias δ. We see that at equilibrium (δ = 0), the
difference between ρM (∞) and ρR (∞) is zero but the difference between
ρL (∞) and ρR (∞) is not. For all other cases, the differences are finite.
However, as shown in (b), the steady-state charge current JL and JR, re-
spectively calculated from ρL (∞) and ρR (∞), show qualitatively similar
behavior. On the other hand, JM = 0 shows that the multi-mode quantum
master equation does not capture non-equilibrium stationary states at all.
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2.5. Evolution towards a NESS

the charge current from the multi-mode quantum master equation is al-
ways zero, the currents from the local-operator Lindblad equation and the
Redfield equation are qualitatively similar. The first fact confirms that the
multi-mode quantum master equation captures properly only the equilib-
rium distribution, but cannot describe transport through the system, as
should be obvious from its structure. The second fact suggests that the
local-operator Lindblad equation may be used to study, qualitatively, trans-
port properties. However, since the ratio between the two currents changes
for different parameters, it is impossible to link JR quantitatively to JL.

This qualitative similarity, if confirmed for more complicated problems,
could still be valuable for qualitative studies, for example in the question
of normal v.s. anomalous conductance. More investigation are needed to
check how universal this similarity is, but they are hampered by the lack
of efficient solutions for the Redfield equation. If confirmed, this similarity
would be useful since it is much easier to solve the local-operator Lindblad
equation than the Redfield equation [59]. While not a proof, the results
shown here for a 2-site system coupled to 2 baths clearly illustrate why
the local-operator Lindblad equation and the multi-mode quantum master
equation approaches are questionable when studying transport through open
systems. This is why we focus on the Redfield equation from now on.

To summarize, up to this point we have derived the general effective
equation of motion and the more specific Redfield equation, and we have
also illustrated the general procedure of solving the Redfield equation by
brute force direct methods. Before we develop more efficient approaches
in the next chapters, we would also like to discuss its relation to the most
general evolution equation, the semigroup Lindblad form. This is the topic
of the next section.

2.5.3 The general Lindblad form

The evolution operators of a closed quantum system H, U (t) = e−iHt, form
a group. In general, however, the evolution operators of an open system form
a semigroup so as to keep the density matrix always positive and normalized,
but not necessary reversible,

ρ (t) = U (t) ρ (0) (2.96)

such that
U (t1 + t2) = U (t1)U (t2) . (2.97)

For a closed system, we have the additional condition:

U (−t) = U−1 (t) (2.98)
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2.6. Major challenge for large systems

which insures reversibility.
Lindblad discussed the generators of such trace-preserving positive semi-

groups [90]. As shown in a theorem by Gorini, Kossakowski and Sudarshan
[91], a completely positive semigroup evolution of a quantum system in a
n-dimensional Hilbert space can be characterized by a Lindblad operator
that governs its evolution

d

dt
ρ (t) = Lρ (t) , (2.99)

where generally:

Lρ (t) = −i
[
Ĥ, ρ

]
+

1

2

n2−1∑
ij

Aij

([
Li, ρL

†
j

]
+

[
Liρ, L

†
j

])
, (2.100)

where the operators {Li} form an orthonormal basis of the operators on
the system’s Hilbert space, and the constants coefficient matrix A must be
positive. Note that the local-operator Lindblad equation is of the Lindblad
form, where Li = aα and Aij = Aiδij , and α = L,R stands for the left
and the right baths respectively. This is why, especially in practical usage,
some [59, 75] refer to the local-operator Lindblad equation as the Lindblad
equation.

More importantly, the Redfield equation of Eq. (2.48) is not of the Lind-
blad form. In principle, this means that it may lead to non-physical results
such as non-positive density matrices, however we have never encountered
such problems in any of our simulations.

2.6 Major challenge for large systems

As it is clear from the examples presented above, the major challenge in
solving the Redfield equation has to do with the dimension of the vector P .
This is 22N for a N -site system of spinless fermions, (2S + 1)2N for an N -site
chain of spins-S, and infinity for bosonic systems. With such exponential
growth, it is impossible to deal with large systems by direct methods, in-
cluding the Runge-Kutta method, the eigenvector corresponding to the zero
eigenvalue, the solution of the linear system and other propagator-based
methods [64]. Using these methods, current computational power allows us
to deal with systems with up to N = 10 [37, 38]. There are interesting physi-
cal systems well within this size which already show rich behavior. However,
such limitations on the system’s size does not give us a lot of freedom to
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2.6. Major challenge for large systems

separate reliably bulk behavior from boundary effects, for larger systems. In
contrast, quite often the non-equilibrium Green’s function methods [4, 13]
are capable of dealing with system sizes of up to N ∼ 200.

The various methods mentioned in the introduction are either not effi-
cient enough, or involve additional approximations. As we mentioned earlier,
efficient stochastic wave-function methods [65] have been developed for both
the local-operator Lindblad equation and the Redfield equation. This has
better efficiency then the direct methods and it is capable of dealing with
roughly N ∼ 20. For the local-operator Lindblad equation only, an efficient
method has been developed based on the time-dependent density matrix
renormalization [59], capable of dealing with N ∼ 100. However, we have
argued that the local-operator Lindblad equation’s predictions are quantita-
tively different from those of the Redfield equation. In the rest of this thesis,
we will search for more efficient methods to calculate non-equilibrium sta-
tionary states of large systems for the Redfield equation, and discuss some
preliminary applications.

This chapter served as a foundation for our theory. None of it, except
for the comparison between the Redfield equation, the local-operator Lind-
blad equation and the multi-mode quantum master equation, is our original
contribution. These start in the next chapter.
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Chapter 3

Linear Response Theory:
Kubo formula for open
systems

3.1 Introduction

Consider a finite size one-dimensional system whose ends are coupled to two
baths held at different temperatures and/or different chemical potentials,
leading to flow of energy or charge through the system. The question of
interest to us is to find the stationary state and thus physical quantities,
in particular the steady-state charge and heat currents. Since it is hard to
solve exactly for the non-equilibrium stationary states of large systems, in
this chapter we introduce an approximate solution for the Redfield equation
valid for small biases. We call this approach the open Kubo formula as it is
somewhat similar to the standard Kubo formula for isolated systems. While
the size limitation of direct methods is around N = 10 (measured in qubit),
in certain circumstances detailed below the open Kubo formula is capable
of dealing with systems of up to N = 20 sites, the same size limitation as
with exact diagonalization of Hamiltonians.

The open Kubo formula gives the first-order corrections towards non-
equilibrium stationary states for finite-size systems, starting from the cor-
responding equilibrium states. Two forms of such Kubo-like formulae are
proposed. The first, while computationally less efficient, gives proper general
density matrices. The more efficient second form produces correct average
values only for certain special physical quantities. Conditions for these spe-
cial cases will also be discussed.

Besides efficiency, this work is also motived by considerations of the ap-
plicability of the standard Kubo formula to finite-size open systems. The
standard Kubo formula has been widely used for both infinite [42] and finite-
size systems [82], usually with periodic boundary conditions. Open bound-
ary conditions have also been considered, leading to qualitatively different
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3.2. General Linear Response Theory

results [44]. For finite-size systems, the standard Kubo formula leads to
a summation of many Dirac δ-function peaks at different energies. Var-
ious ways to get around or to smooth out such δ peaks have been pro-
posed [92, 93]. However, there is no guarantee that correct physical quanti-
ties can be extracted via such procedures.

More importantly, we show that the standard Kubo formula gives the
first-order corrections towards equilibrium states of the perturbed systems,
instead of the desired non-equilibrium stationary states. We also prove that
the standard formulas for Drude weight and dc conductance only work for
infinite-size systems, not for finite-size ones. One way to solve these issues
is to explicitly take into consideration the coupling to baths. This is why
we are interested in linear response theory based on the Redfield equation.

This chapter is organized as follows. In Section §3.2 we briefly review
the general linear response theory, and in Section §3.3 we discuss the ap-
plicability of the standard Kubo formula. In Section §3.4 we present the
open Kubo formula based on the Redfield equation, and finally, in Section
§3.5, for small systems, we compare the approximate solution from this open
Kubo formula with the direct numerical solution of the Redfield equation,
in order to gauge its validity.

3.2 General Linear Response Theory

Consider a general linear equation of motion,

∂ρ (t)

∂t
= (L0 +∆L) ρ, (3.1)

where L0 is the “large” term and ∆L is the “perturbation”. Explicit forms
for L0 and ∆L will be given later. We are particularly interested in station-
ary states of the above equation, ρ (∞), given by:

(L0 +∆L) ρ (∞) = 0. (3.2)

Let us assume that ρ0 is known and it satisfies

L0ρ0 = 0. (3.3)

Then, to first order, δρ = ρ− ρ0 is the solution of

∂δρ (t)

∂t
= L0δρ+∆Lρ0, (3.4)
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3.2. General Linear Response Theory

where we have neglected the second order term ∆Lδρ. A general solution
of the above equation is

δρ (t) =

∫ t

t0

dτeL0(t−τ)∆Lρ0 + δρ (t0) , (3.5)

Assuming that ∆L was turned on at t0 = −∞ when the initial state was ρ0
so that δρ (t0) = 0, we have the steady-state solution at t = 0 to be,

δρ (t = 0) =

∫ 0

−∞
dte−L0t∆Lρ0. (3.6)

Changing the variable t to −t, we then arrive at

δρ (∞) =

∫ ∞

0
dteL0t−ηt∆Lρ0. (3.7)

Here we have inserted an infinitesimal positive number η (η → 0+) to make
sure that the expression converges. This η is necessary if the real part of
any eigenvalues of L0 are zero. The stationary state is ρ (∞) = δρ (∞)+ ρ0.
This is the basic formulation of linear response theory.

It is required that every eigenvalue of L0 must have a negative or zero
real part, so that the unperturbed system described by L0 eventually reaches
a stationary state. If every eigenvalue of L0 happens to have a negative real
part, as will be the case in one of the methods described below, then L0 is
invertible and

δρ (∞) = − (L0 − η)−1∆Lρ0. (3.8)

This can also be derived from Eq. (3.2) since L0 is non-singular,

0 = (L0 +∆L) (ρ0 + δρ (∞)) ⇒ δρ (∞) = −L−1
0 ∆Lρ0. (3.9)

This is a straightforward formula if L0 is indeed invertible but it becomes
tricky if L0 has zero eigenvalues. In this latter case, we can still use Eq.
(3.7), but not Eq. (3.8). We may transform L0 to a non-singular L̄0 using
the fact that ρ is normalized, tr (ρ) = 1 as we have done in rewriting Eq.
(2.88) as Eq. (2.89). Following that we find a corresponding expression
similar to Eq. (3.8), more specifically

δρ (∞) = −L̄−1
0 ∆L̄ρ0. (3.10)
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3.3. Limitations of the standard Kubo formula

3.3 Limitations of the standard Kubo formula

The Liouville-von Neumann equation of motion for the density matrix ρ(t)
of a closed system is:

∂ρ (t)

∂t
= LHρ (t) = −i[H, ρ], (3.11)

where H is its Hamiltonian. Long-term stationary solutions of this equation
are not unique. A special class of such states are the Boltzmann equilibrium
distributions:

ρeq (H) =
1

Z
e−βH , (3.12)

where Z = tr
(
e−βH

)
, β = 1/T .

If H = HS + Vext, where HS is the isolated system and Vext is a static
weak coupling to an external field, one can formally use the above general
linear response theory to find a stationary solution ρ (∞) = ρ0+δρ (∞) near
a state ρ0 of the unperturbed system, LHS

ρ0 = 0:

δρ (∞) =

∫ ∞

0
dteL0t−ηtLVextρ0. (3.13)

If ρ0 = ρeq(HS) describes the unperturbed system in equilibrium, then this
leads to the standard Kubo formula [6, 40]:

δρ (∞) = −i
∫ ∞

0
dte−ηt

[
Vext (−t) ,

e−βHS

Z

]
, (3.14)

where Vext(t) = eiHStVexte
−iHSt. We can use the identity [Vext(−t), e−βHS ] =

−ie−βHS
∫ β
0 dτV̇ext (−t− iτ), where V̇ext (−t− iτ) = d

dtVext (t) |t=−t−iτ , to
rewrite:

δρ (∞) = −
∫ ∞

0
dte−ηt

∫ β

0
dτρ0V̇ext (−t− iτ) . (3.15)

In terms of the eigenvectors of HS , HS |n〉 = εn|n〉,

〈m|V̇ext (t) |n〉 = i (εm − εn) 〈m |Vext|n〉 ei(εm−εn)t, (3.16)

leading to:

δρ (∞) =
∑
m,n

εm 6=εn

e−βεm − e−βεn

Z

〈m |Vext|n〉
εm − εn − iη

|m〉〈n| . (3.17)
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Incidentally, note that there is no contribution from states with εn = εm, for
which 〈m|V̇ext (t) |n〉 = 0. This also follows directly from Eq. (3.14); if we
write Vext = V 0

ext+V
⊥
ext, where V

0
ext =

∑
εm=εn

〈m |Vext|n〉 |m 〉〈n| commutes

with HS , then [Vext(−t), ρ0] = [V ⊥
ext(−t), ρ0]. The “diagonal” part V 0

ext of
Vext does not contribute to δρ (∞), and consequently has no influence on
the static response functions.

The lack of diagonal contribution is, however, very puzzling. The well-
known Drude weight, which is derived from the standard Kubo formula and
is used quite often when discussing charge or thermal transport [42, 44, 82]
reads

D =
πβ

L

∑
m,n

εm=εn

e−βεm

Z
|〈m|Ĵ |n〉|2. (3.18)

It has contributions only from states with εm = εn.
To understand the reason for this difference, consider the derivation of

Eq. (3.18) from Eq. (3.15), e.g. for spinless fermions in a one-dimensional
chain (lattice constant a = 1), described by

HS = −t
∑
l

(
c†l cl+1 + h.c.

)
+ V0

∑
l

nlnl+1, (3.19)

where nl = c†l cl, plus a static electric potential

Vext =
∑
l

Vlnl (3.20)

induced by a homogeneous electric field E = −∇V . From the continuity
equation:

V̇ext(t) =
∑
l

Vl
d

dt
nl(t) = −

∑
l

Vl[Jl+1(t)− Jl(t)], (3.21)

where Jl = it
(
c+l+1cl − c+l cl+1

)
is the local current operator. The sum can

be changed to

−
∑
l

[Vl−1Jl(t)− VlJl(t)] = −EJ(t), (3.22)

where J(t) =
∑

l Jl(t) is the total current operator. Using V̇ext(t) = −EJ(t)
(or, on a lattice, E = Vl−1 − Vl) in Eq. (3.15) gives

δρ (∞) = E

∫ ∞

0
dte−ηt

∫ β

0
dτρ0J (−t− iτ) . (3.23)
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The dc conductivity is then

σ =

∫ ∞

0
dte−ηt

∫ β

0
dτ 〈J (−t− iτ) J〉 , (3.24)

where 〈O〉 = Tr[ρeq(HS)O]. This expression can be further simplified to
arrive at Eq. (3.18).

The only questionable step in this derivation, and the one responsible
for going from a result with no contributions from states with εn = εm, to
one with contributions only from these states, is the change∑

l

VlJl+1(t) →
∑
l

Vl−1Jl(t). (3.25)

This is only justified for an infinite system (where boundary terms are pre-
sumed to be negligible), or a system with periodic boundary conditions and
an external field with the same periodicity. This latter condition can only
be achieved for a charge current in a finite system with periodic bound-
ary conditions driven by a varying magnetic flux through the area enclosed
by the system. For a finite-size system (even one with periodic boundary
conditions) in a static applied electric field this approach is not valid. The
same is true for thermal transport, which cannot experimentally be induced
in a system with periodic boundary conditions. In both cases, the physical
relevance of the results of Eq. (3.18) are hard to fathom.

There is an even more serious conceptual problem with the standard
Kubo formula: the resulting distribution ρ̃ = ρeq(HS) + δρ (∞) is the first
order perturbational expansion of ρeq (H), not the expected non-equilibrium
stationary state. This statement is proved below, where for convenience, we
assume that the diagonal part V 0

ext = 0. If it is not, we simply remove the
“diagonal” part V 0

ext from Vext and add it to HS .
Consider then the eigenstates of the full Hamiltonian, H|ñ〉 = ε̃n|ñ〉, to

first order perturbation in Vext. Since 〈m |Vext|n〉 = 0 for all εm = εn, we
can apply the first order perturbation theory for non-degenerate states to
all the states, whether degenerate or not, to find

ε̃n = εn +O
(
V 2
ext

)
(3.26)

and

|ñ〉 = |n〉+
∑

m,εm 6=εn

〈m|Vext|n〉
εn − εm

|m〉+O
(
V 2
ext

)
. (3.27)
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This immediately leads to

ρeq (H) =
∑
n

1

Z̃
e−βε̃n |ñ〉〈ñ| = ρeq(HS) + δρ (∞) +O(V 2

ext), (3.28)

where δρ (∞) is indeed given by Eq. (3.17). Intuitively this is easy to un-
derstand. In a sense, we found the original thermal equilibrium distribution
ρeq(HS) from the Liouville equation with H = HS . Then, it is not so sur-
prising that a perturbation based on the same Liouville equation for the full
H = HS + Vext leads to ρeq (H).

This verifies our previous statement that the standard Kubo formula
implies ρ (∞) → ρeq(H). This is rather problematic because normally – for
example if invariance to time reversal symmetry is not broken – no currents
are generated in a thermal equilibrium state and therefore no steady-state
transport through the closed finite system can be described by this approach.
However, because we only keep the first-order perturbational correction, the
situation is less clear-cut. In principle, it is not impossible for δρ of Eq.
(3.17) to also be a first order approximation to the true non-equilibrium
stationary state, or at least to capture a sizable part from it. This needs to
be investigated in more detail, and we do so below.

Before that, let us also note that the fact that the use of Eq. (3.18)
and its equivalents for finite size systems is problematic can also be seen
from the following technical considerations. The spectrum of a finite-size
system is always discrete. As a result, any pair of degenerate eigenstates
εm = εn gives a δ-function contribution to the response functions. Such a
singular response is unphysical for finite-size systems (for an infinite system,
the integration over the continuous spectrum removes these singularities).
Various techniques have been proposed to smooth out these singular con-
tributions in order to extract some finite values, such as use of imaginary
frequencies [93] or averaging σ (ω) over a small range of frequencies δω and
then taking δω → 0 [92]. These different approaches may lead to different
results. Moreover, the order in which the various limits are approached, e.g.,
taking η → 0 before L→ ∞ or vice versa, also make a difference [92]. All of
these subtleties of the standard Kubo formula are related to the potential
divergence whenever εm = εn in Eq. (3.18).

To summarize, using the standard Kubo formula blindly for finite-size
systems is fraught with both conceptual and technical problems. Its solution
gives the first order correction of the equilibrium state of the full Hamilto-
nian, instead of the expected non-equilibrium stationary state. The derived
Drude weight formula is applicable only for infinite-size systems; applying
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it directly to finite-size systems involves dealing with unphysical δ-function
peaks. In order to fix these difficulties, we now discuss how to calculate the
non-equilibrium stationary states from the Redfield equation, which takes
the connection between system and baths explicitly into consideration.

3.4 Open Kubo formula: linear response theory
for open finite-size systems

For concreteness, let us assume that the central system is coupled to thermal
baths kept at temperatures TL/R = T ± ∆T

2 and investigate the thermal
transport in the resulting steady state. If ∆T � T , this will lead to a Kubo-
like formula which replaces Eq. (3.15). This approach can be generalized
straightforwardly to derive a Kubo-like formula for charge transport.

The general Redfield equation can be written as:

∂ρ(t)

∂t
= [LH + LL(TL) + LR(TR)] ρ(t), (3.29)

where LHρ = −i[H, ρ], just like for an isolated system, while LL/R are
additional terms that describe the effects of the left/right thermal baths
(assumed to be in equilibrium at their corresponding temperatures TL/R)
on the evolution of the system. We have seen from Eq. (2.48) how the
expressions for LL/R depend on the Hamiltonian H of the system and on its
coupling to the baths. Generally speaking, H could also contain an external
potential due to coupling to the external field, Vext, such thatH = HS+Vext.
Such a term is expected to appear for charge transport, but not for thermal
transport, therefore in the following we set Vext = 0.

As we have seen in Eq. (2.48), the temperature and chemical potential
of the left (right) baths enter the Redfield equation only via average particle
numbers n (ε, TL, µL) (n (ε, TR, µR)). Therefore, if ∆T � T , we can Taylor
expand the particle number into a large part and a small part. Thus we also
expand the LL/R and re-arrange the Redfield equation to read:

∂ρ(t)

∂t
= [LHS

+ LB(T ) + LP (∆T )] ρ(t) = Lρ(t), (3.30)

where LB(T ) = LR(T ) + LL(T ) is the contribution from the thermal baths
if both are kept at the same temperature, while LP (∆T ) collects the terms
proportional to ∆T .
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We are interested in the t → ∞, stationary state solution ρ (∞) of the
above equation, satisfying both Eq. (2.88) and Eq. (2.89), which are rewrit-
ten in the following form for convenience,

Lρ (∞) = 0, (3.31)

and

L̄ρ (∞) = ν. (3.32)

As we have shown in examples in the previous chapter, L has one non-
degenerate zero eigenvalue and all its other (transient) eigenvalues have a
negative real part, so ρ (∞) is unique for any value of ∆T . We have also
shown that for small systems, Eq. (3.31) and Eq. (3.32) can be solved
numerically. We call this solution ρex and we use it to validate the solutions
of various approximation schemes.

A Kubo-like formula, which is potentially more efficient, can be obtained
using linear response theory. The first step is to separate the Liouvillian L
of Eq. (3.30) into a “large” plus a “small” part. There are two possible
choices: {

L
(1)
0 = LHS

+ LB(T )

∆L(1) = LP (∆T )
(3.33)

or {
L
(2)
0 = LHS

∆L(2) = LB(T ) + LP (∆T )
(3.34)

We begin with the first choice. Assume that L
(1)
0 has eigenvalues

{
L
(1)
0,µ

}
and left/right eigenvectors {|Lµ)}, {|Rµ)}. As discussed, the unique (zero

order in perturbation theory) steady-state solution of L
(1)
0 ρ0 = 0 is ρ0 =

ρeq(HS). The deviation δρ
(1)
K due to the perturbation ∆L(1) is obtained like

in Eq. (3.13):

δρ(1) (∞) =
∑
µ

∫ ∞

0
dteL

(1)
0,µt−ηt |Rµ) (Lµ|∆L(1)ρ0

= −
∑
µ

|Rµ) (Lµ|
L
(1)
0,µ − η

∆L(1)ρ0 = −
∑
µ>0

|Rµ) (Lµ|
L
(1)
0,µ

∆L(1)ρ0. (3.35)

Note that the only divergent term, due to L
(1)
0,0 = 0, disappears because

(L0|∆L(1)ρ0 = (ρ0|∆L(1)ρ0 = 0. To see why, we start from Eq. (3.31),
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L(ρ0 + δρ) = 0, project it on (ρ0| and keep terms only to the first order,

to find 0 = (ρ0|
(
L
(1)
0 +∆L(1)

)
(ρ0 + δρ) = (ρ0|∆L(1)ρ0 since L

(1)
0 ρ0 = 0.

As a result, Eq. (3.35) has only regular contributions. A similar approach
has been suggested in Ref. [88], but for the local-operator Lindblad equa-
tion [90] instead of the Redfield equation.

Eq. (3.35) is difficult to use in practice: finding all eigenstates of L
(1)
0

is a hard task unless the system has an extremely small Hilbert space. A
computationally simpler solution is obtained from Eq. (3.32), where, in
matrix terms, L̄ is defined by replacing the first row of the equation Lρ (∞) =
0 by Tr (ρ (∞)) = 1, so that ν is a vector whose first element is 1, all
remaining ones being 0. As a result det

(
L̄
)
6= 0 while det (L) = 0.

We can also solve it to obtain a Kubo-like formula by dividing L̄ =

L̄
(1)
0 +∆L̄(1). Again, the overbar shows that in matrix terms, L̄

(1)
0 is obtained

from L
(1)
0 by replacing its first row with Tr (ρ (∞)) = 1, while ∆L̄(1) is

obtained from ∆L(1) by replacing its first row with zeros. We find

δρ̄(1) (∞) = −[L̄
(1)
0 ]−1∆L̄(1)ρ0. (3.36)

This is much more convenient because inverting the non-singular matrix

L̄
(1)
0 is a much simpler task than finding all the eigenvalues and eigen-

vectors of L
(1)
0 . We have verified that both schemes produce identical re-

sults on systems on which both of them can be performed. We denote
ρ0 + δρ̄(1) (∞) = ρ(1) (∞).

The second option is to take L
(2)
0 = LHS

and ∆L(2) = LB(T )+LP (∆T ).

In this case, we can still choose the stationary solution associated with L
(2)
0 to

be the thermal equilibrium state at T , ρ0 = ρeq(HS). However, this solution
is no longer unique, since any matrix ρ0 that is diagonal in the eigenbasis

of HS satisfies L
(2)
0 ρ0 = 0. Expanding the corresponding analogue of Eq.

(3.14) in the eigenbasis of HS , we now find:

δρ(2) (∞) = −i
∑
n,m

〈m|∆L(2)ρ0|n〉
εm − εn − iη

|m〉〈n|. (3.37)

We call ρ0 + δρ(2) (∞) = ρ(2) (∞). Note that unlike ρ(1) (∞) of Eq. (3.36),
this solution has divergent contributions from states with εn = εm. As such,
it is analogous to the standard Kubo formula for infinite systems. This
is not an accident. As discussed, the standard Kubo formula for infinite
systems always ignores the coupling to the leads. It also takes L0 = LHS

and assumes that ρ0 = ρeq(HS). Moreover, the driving force for transport
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is only the potential Vext added to HS , so that ∆L → LVext . With these
assumptions, Eq. (3.37) maps straightforwardly into the standard Kubo
formula of Eq. (3.17).

3.5 Comparison of the two open Kubo formulae

To see which of these two solutions – the regular solution ρ(1) (∞) or the
singular solution ρ(2) (∞) – gives a proper density matrix, we compare them
against the exact numerical solution ρex of Eq. (3.31) in the limit ∆T � T .

We do this for an N -site chain of spinless fermions

HS = −t
N−1∑
l=1

(
c†l cl+1 + c†l+1cl

)
+ V0

N−1∑
l=1

c†l+1cl+1c
†
l cl. (3.38)

coupled to two heat baths, modeled as collections of fermions:

HB =
∑

k,α=L,R

ωk,αb
†
k,αbk,α, (3.39)

where α indexes the left and right-side baths and we set ~ = 1, kB = 1, the
lattice constant a = 1, and hopping t = 1. The system-baths coupling is
chosen as:

VSB = λ
∑
k,α

V α
k

(
c†αbk,α + cαb

†
k,α

)
, (3.40)

where the left (right) bath is coupled to the first (last) site: cL = c1 and
cR = cN . Bath parameters, i.e. the temperature and chemical potential, are
chosen to be (TL, µ) and (TR, µ) with TL/R = T ± ∆T

2 .
The corresponding Redfield equation reads from Eq. (2.48),

∂ρ(t)

∂t
= −i[HS , ρ(t)]

−λ2
∑

α=L,R

{[
c†α, m̂αρ(t)

]
+
[
cα, ˆ̄mαρ(t)

]
+ h.c.

}
, (3.41)

where operators m̂α and ˆ̄mα are defined by Eq. (2.49), which is rewritten
here for convenience:

m̂α = π
∑
m,n

|m〉〈n|〈m|cα|n〉 (1− nα (Ωnm)) , (3.42a)

ˆ̄mα = π
∑
m,n

|m〉〈n|〈m|c†α|n〉nα (Ωmn) . (3.42b)
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Figure 3.1: (a) D1 (squares) and D2 (circles) of Eq. (3.43) vs. δ = ∆T/2T ,
for N = 8, t = 1.0, V0 = 0.2, T = 2.0, µ = −1.0, λ = 0.1, η = 0.00001. (b) the
steady-state electric current calculated with ρex (triangles) and ρ(1,2) (∞)
(squares, circles and stars). The inset shows the corresponding particle
numbers.

Eq. (3.41) is an example of the general Eq. (3.29). Since TL/R enters
only in the Fermi-Dirac distributions, it is easy to expand when TL/R =

T ± ∆T
2 ,∆T � T to identify LB(T ) and LP (∆T ).

We characterize the distance between the exact numerical solution ρex
and the two possible Kubo solutions ρ(i) (∞), i = 1, 2 using the norm:

Di =

√∑
n,m

∣∣〈n|ρex − ρ(i) (∞) |m〉
∣∣2. (3.43)

For the proper solution, this difference should be small but still finite, be-
cause of higher-order perturbation terms.

Results typical of those found in all the cases we investigated are shown
for N = 8, V0 = 0.2, λ = 0.1, η = 10−5 in Fig. 3.1(a), where we plot D1,2

vs. δ = ∆T/2T . We see that D2 (circles, axis on the right) is very large.
In fact, because of the singular contributions from εn = εm states, D2 is
divergent, with a magnitude controlled by the cutoff η. In contrast, D1

(squares, left axis) is small and independent of η. Fig. 3.1(b) shows the
electric current (J) and the total number of particles (N) calculated with

ρex, and ρ (∞)(1,2)(triangles, squares, respectively circles). Both N (1) and
J (1) are very close to the exact values N ex, Jex. However, N (2) is very
different from N ex while J (2) is close to Jex. These results confirm that
ρ(1) (∞) of Eq. (3.36) is the proper Kubo solution. They also show that
ρ(2) (∞) can also be used, but only for quantities A for which 〈m |A|n〉 = 0
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Figure 3.2: (a)D1 (squares) and D2 (circles) of Eq. (3.43) vs. λ, for
N = 8, t = 1.0, V0 = 0.2, T = 2.0, µ = −1.0, δ = 0.1, η = 0.00001. (b) the
steady-state electric current calculated with ρex (triangles) and ρ(1,2) (∞)
(squares and circles). The inset shows the corresponding particle numbers.

whenever εm = εn, so that the divergences in Eq. (3.37) disappear. This
explains the previous success of this formula to be somewhat of an accident.

Fig. 3.2 shows the same quantities as Fig. 3.1, at a fixed bias ∆T as a
function of the strength of the system-bath coupling λ. It confirms again
that ρ(1) (∞) is the proper approximation of ρex, but that for the charge
current ρ(2) (∞) works well too. This also shows that the non-equilibrium
stationary states depend on the coupling strength λ. This is not surprising
for a finite-size system: the intrinsic conductance of the system is added to
comparable “contact” contributions from the interfaces between the system
and the baths, and experiments measure the total conductance. It follows
that quantitative modeling of transport in finite systems will require a careful
consideration of the entire experimental set-up.

Fig. 3.3 shows again the same quantities as Fig. 3.1, at a fixed bias
∆T as a function of the strength of the interaction V0. It confirms again
that ρ(1) (∞) is the proper approximation of ρex. We also find that values of
currents Jex are quite different between V0 = 0 and V0 = 1 for example. The
charge currents calculated from both ρ(1,2) (∞) indeed capture the major
part of such difference. One may note a discontinuity in the data around
V0 = 0.6. We think this is due to numerical reasons. The calculation depends
very strongly on the values of energy differences among all energy levels. For
different values of V0, such energy differences may either shift continuously
or change qualitatively.
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Figure 3.3: D1 (squares) and D2 (circles) of Eq. (3.43) vs. V0, for N =
8, t = 1.0, T = 2.0, µ = −1.0, λ = 0.1, δ = 0.1, η = 0.00001. (b) the steady-
state electric current calculated with ρex (triangles) and ρ(1,2) (∞) (squares
and circles). The inset shows the corresponding particle numbers.

3.6 Summary and discussion

To conclude, we first showed that the standard Kubo formula fails to provide
an approximation for non-equilibrium stationary states, instead approximat-
ing the equilibrium state of the whole Hamiltonian. Secondly, applying the
standard Kubo formula to finite systems generically leads to divergences,
which are unphysical. We then showed that taking into consideration the
coupling to baths explicitly solves both problems and leads to a well-behaved
Kubo-like formula. Finally, we showed that the improper solution similar to
those used in literature can give correct average values but only for certain
physical quantities. Although we only considered small systems so as to be
able to calculate ρex, Eqs. (3.36) and (3.37) can be used for larger systems,
with the latter being more efficient but not always valid.

In fact, the above results give us enough grounds to question the validity
of the standard Kubo formula, where the effect of the baths are taken care of
only via an additional potential. We believe that this is not enough. There
are two different types of “driving forces” responsible for a steady-state
current flow. The first force is the applied electric field, which gives rise to
an additional interaction term Vext to be included in the total Hamiltonian
H = HS + Vext of the system. The second one is the imbalance in the
chemical potentials and/or temperatures of the two baths, which results in
a non-equilibrium distribution function ρ (∞). As we have shown above,
the standard Kubo formula calculates the current from ρeq(H), the thermal
equilibrium state of the full Hamiltonian, so it takes into account only the
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effect of Vext, but not the full non-equilibrium distribution function. We
believe that this approach is problematic when calculating charge currents.

This approach is even less reliable for thermal currents, where there is
only one driving force: the non-equilibrium distribution. There is no thermal
equivalent for the electric potential. Some additional assumptions such as
local equilibrium [39] or use of gravitational potentials [40] have been used
to make the situation similar to that of charge transport. Either way, an
artificial thermal potential term Vext is constructed and added to HS and
then one uses ρeq(H) instead of the proper non-equilibrium stationary state,
in direct analogy with the usual approach for charge currents.

The work presented in this chapter points to a solution for these concep-
tual problems, if the baths are explicitly taken into consideration. However,
the resulting open Kubo formula can still only be used for system of up to
N ∼ 20, which may be too small for transport in solid state systems.

In the next two chapters, we present two efficient ways to solve the
Redfield equation for larger systems. Furthermore, unlike the open Kubo
formula based on linear response theory, the new methods are applicable
even when the baths’ bias is not small.
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Chapter 4

BBGKY-like hierarchy for
the Redfield equation

4.1 Introduction

In this chapter we introduce a much more efficient way to solve the Redfield
equation, based on a BBGKY-like hierarchy. Its efficiency depends on the
level at which the hierarchy is truncated. At first order, where only single-
particle Green’s functions are involved, it leads to a linear system with N2

unknowns for a N -site spinless fermionic system. This makes it possible
to analyze systems larger than those that can be treated with the non-
equilibrium Green’s function method.

Like the diagrammatic perturbation theory [18], the BBGKY equation
hierarchy for systems in equilibrium also provides an equivalent systematic
approach to calculate many-particle correlation functions [68, 69]. For non-
interacting systems, the hierarchy is decoupled, meaning that the equation
of a single-particle Green’s function is only related to other single-particle
Green’s functions, forming a closed system of equations. The same holds for
general n-particle Green’s functions denoted as Gn. However, when there
are interactions in the system, equations of all orders of Green’s functions
are coupled together. Generically, equations for n-particle Green’s functions,
Gn, also involve Gn+1, so that the system of BBGKY equations becomes
infinite. In this case, approximations such as the cluster expansions can be
used to truncate and then solve the truncated hierarchy [69, 94].

Here we use exactly the same idea but now for the Redfield equation. Not
surprisingly, for non-interacting central systems we find that the hierarchy
is decoupled, just like for systems in equilibrium. In fact, in Ref. [36], the
Redfield equation with N ∼ 100 has been solved in terms of single-particle
Green’s functions. However, they did not regard this as a special case of
the more general BBGKY-like equation hierarchy. From this point of view,
our idea is basically to extend this Green’s function based solution of the
Redfield equation from Ref. [36] to interacting systems, where equations for
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Green’s functions of various orders become coupled.
Two systematic approximations are proposed to truncate and solve the

hierarchy. As a test of reliability of the proposed methods, we apply them to
small systems which can also be solved with exact direct methods. Consis-
tent results are found. Just as the usual Wick’s theorem of non-interacting
systems provides a basis for the usual diagrammatic perturbation theory of
interacting systems, one of the approximations requires a non-equilibrium
Wick’s theorem. Such a theorem is proved starting from the Redfield equa-
tion of non-interacting systems.

This chapter is organized as follow. In Section §4.2, using a specific exam-
ple, a BBGKY-like equation hierarchy is derived from the Redfield equation.
In Section §4.3, non-interacting systems are discussed and a non-equilibrium
Wick’s theorem is proved. In Section §4.4, we introduce the two methods to
truncate and solve the coupled hierarchy for interacting systems, and com-
pare them against exact results. We find that both methods are significantly
more efficient than the direct methods. The first is capable of dealing with
relatively small systems but with strong interactions, while the second can
deal with much larger systems but with relatively weaker interactions. For
the latter case, we demonstrate that a systematic increase in the level at
which the truncation is performed leads to a systematic improvement of the
results, as well as an increase in the range of interactions for which good
accuracy is obtained.

4.2 Derivation of the BBGKY-like hierarchy

For concreteness in presenting our general formulation, let us start from
the same Redfield equation describing an N -site chain of spinless fermions
coupled with two fermionic baths. Our system of interest is described by:

HS = −t
N−1∑
l=1

(
c†l cl+1 + c†l+1cl

)
+ V0

N−1∑
l=1

c†l+1cl+1c
†
l cl = H0 + VS , (4.1)

and its Redfield equation, given by Eq. (3.41), is rewritten here for conve-
nience:

∂ρ(t)

∂t
= −i[HS , ρ(t)]− λ2

∑
α=L,R

{[
c†α, m̂αρ(t)

]
+

[
cα, ˆ̄mαρ(t)

]
+ h.c.

}
,

(4.2)

56



4.2. Derivation of the BBGKY-like hierarchy

where the operators m̂ and ˆ̄m are defined as follows:

m̂α =
∑
k

|V α
k |2

∫ ∞

0
dτcα (−τ) e−iωk,ατ 〈1− n (ωk,α)〉 , (4.3a)

ˆ̄mα =
∑
k

|V α
k |2

∫ ∞

0
dτc†α (−τ) eiωk,ατ 〈n (ωk,α)〉 . (4.3b)

Here, α = L,R refer to the two baths, cα correspond to the two sites at the
boundaries coupled each to its corresponding bath, ωk,α are the energies of
the modes in bath α, and 〈n (ωk,α)〉 are their average occupation numbers.

If U (t) = e−iHSt is known, then so are cα (t) = U † (t) cαU (t) and there-
fore the operators m̂. Finding explicit forms for m̂ and ˆ̄m thus requires a full
diagonalization of HS . Using its eigenvectors, one can perform the above
integrals to get these operators. More details are included in Appendix A.

Again we are only interested in the long-time steady-state solution ρ (∞)
and we want to calculate the values of various correlation functions. For a
physical quantity of the central system, denoted by the operator A, from
Eq. (4.2) we find:

0 = i 〈[A,H0]〉+ i 〈[A, VS ]〉+ λ2
∑
α

{〈[
A, c†α

]
m̂α

〉
+
〈
[A, cα] ˆ̄mα

〉
−

〈
m̂†

α [A, cα]
〉
−

〈
ˆ̄m†
α

[
A, c†α

]〉}
, (4.4)

where 〈A〉 = tr (Aρ (∞)) and m̂†
α( ˆ̄m

†
α) is the hermitian conjugate of m̂α( ˆ̄mα).

Here we have used the cyclic property of the trace operator. All equations
of Green’s functions in the rest of this paper will be derived from this equa-
tion. For example, the first and the second equation of the hierarchy for
respectively single-particle Greens functions:

G1

(
m†, n

)
=

〈
c†mcn

〉
(4.5)

and two-particle Greens functions:

G2

(
m†, n†,m

′
, n

′
)
=

〈
c†mc

†
ncm′ cn′

〉
(4.6)

can be derived by using A = c†mcn, respectively A = c†mc
†
ncm′ cn′ in Eq(4.4):
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0 = it
〈
c†m−1cn

〉
+ it

〈
c†m+1cn

〉
− it

〈
c†mcn+1

〉
− it

〈
c†mcn−1

〉
(4.7a)

−iV0
〈
c†mc

†
n−1cncn−1

〉
+ iV0

〈
c†m+1c

†
mcm+1cn

〉
−iV0

〈
c†n+1c

†
mcn+1cn

〉
+ iV0

〈
c†mc

†
m−1cncm−1

〉
(4.7b)

−λ2
∑
α

〈
δmαcn ˆ̄mα + δnα ˆ̄m†

αc
†
m − δnαc

†
mm̂α − δmαm̂

†
αcn

〉
, (4.7c)

and

0 = it
〈
c†m−1c

†
ncm′ cn′

〉
+ it

〈
c†m+1c

†
ncm′ cn′

〉
+ it

〈
c†mc

†
n−1cm′ cn′

〉
+it

〈
c†mc

†
n+1cm′ cn′

〉
− it

〈
c†mc

†
ncm′ cn′

+1

〉
− it

〈
c†mc

†
ncm′ cn′−1

〉
−it

〈
c†mc

†
ncm′

+1cn′

〉
− it

〈
c†mc

†
ncm′−1cn′

〉
+iV0

〈
c†mc

†
ncm′ cn′

〉(
δm′+1,n′ + δm′−1,n′ − δm+1,n − δm−1,n

)
(4.8a)

−iV0
∑

l=m±1,n±1

〈
c†l c

†
mc

†
nclcm′ cn′

〉
+iV0

∑
l=m′±1,n′±1

〈
c†l c

†
mc

†
nclcm′ cn′

〉
(4.8b)

−λ2
∑
α

{
δm′α

〈
c†mc

†
ncn′ m̂α

〉
− δn′α

〈
c†mc

†
ncm′ m̂α

〉
+δmα

〈
c†ncm′ cn′ ˆ̄mα

〉
− δnα

〈
c†mcm′ cn′ ˆ̄mα

〉
+ δn′

α

〈
ˆ̄m†
αc

†
mc

†
ncm′

〉
−δm′α

〈
ˆ̄m†
αc

†
mc

†
ncn′

〉
+ δnα

〈
m̂†

αc
†
mcm′ cn′

〉
− δmα

〈
m̂†

αc
†
ncm′ cn′

〉}
. (4.8c)

Note that since the set of all polynomials of
{
cl, c

†
l

}
form a complete basis

of the operator space, operators m̂ are certainly functions of polynomials

of
{
cl, c

†
l

}
. Therefore, we expected G1 to depend on G2 from Eq(4.7b),

and possibly also G3 or higher Green’s functions from Eq(4.7c); while G2

is coupled to G3 from Eq(4.8b), and possibly also G4 or higher Green’s
functions from Eq(4.8c). Solving this full hierarchy is no easier than directly
solving the Redfield equation, unless VS = 0 so that the set of equations for
G1 is closed, i.e. not coupled to G2.

We may, however, solve these equations by truncating the hierarchy at
a certain level using further approximations, such as the molecular-chaos
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4.3. Non-equilibrium Wick’s theorem

assumption in the classical Boltzmann equation [51], or replacing higher
order Green’s functions by a cluster expansion of lower order ones [69, 94, 95].
We use the following two approximate methods: (1) substitution of certain
higher-order Green’s functions by their values at equilibrium; (2) expressing
higher-order Green’s functions as combinations of lower-order ones plus a
correlation part via cluster expansion, and then ignoring the correlation part
at a certain order. A rough estimate of the accuracy of these substitutions at
different orders can be found in Appendix C. Here we focus on the potential
of this BBGKY-like formulation and discuss briefly the performance of the
two approximations.

4.3 Non-interacting systems: proof for a
non-equilibrium Wick’s theorem

In this section, we will prove that when V0 = 0,

G2

(
k†1, k

†
2, k3, k4

)
= G1

(
k†1, k4

)
G1

(
k†2, k3

)
−G1

(
k†1, k3

)
G1

(
k†2, k4

)
,

(4.9)

where G1 and G2 are defined as

G1

(
k†1, k2

)
=

〈
c†k1ck2

〉
, (4.10)

respectively

G2

(
k†1, k

†
2, k3, k4

)
=

〈
c†k1c

†
k2
ck3ck4

〉
. (4.11)

In a general non-equilibrium state, one may have 〈ck3ck4〉 6= 0. In that
case, the above Wick’s theorem should have a more general form. In all of
our examples, our choice of the specific system-baths coupling makes such
Green’s functions vanish. If there are terms involving two creation or two
annihilation operators in the coupling between the central system and the
baths, the situation is different.

Here it is more convenient to work in the momentum representation than
the position representation, therefore we define:

ck =
1√
N

N∑
l=1

sin
klπ

N + 1
cl. (4.12)
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For a tight-binding chain with N sites and free ends (c0 = 0 = cN+1), the
usual plane-waves of infinite-size systems eikl are replaced by the eigenstates
sin klπ

N+1 , hence this transformation. In this representation,

H0 =
N∑
k=1

εkc
†
kck, (4.13)

where

εk = −2t cos
πk

N + 1
. (4.14)

Starting from Eq(4.4) with the above H0 in momentum space and using

A = c†k1ck2 and A = c†k1c
†
k2
ck3ck4 , we find the equations for G1

(
k†1, k2

)
and

respectively G2

(
k†1, k

†
2, k3, k4

)
as follows:

0 = i (εk2 − εk1)G1

(
k†1, k2

)
−λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k2πlα
N + 1

(n (k1) + n (k2))

+λ2
2π

N + 1

∑
α,k

[
sin

k2πlα
N + 1

sin
kπlα
N + 1

G1

(
k†1, k

)
+sin

k1πlα
N + 1

sin
kπlα
N + 1

G1

(
k†, k2

)]
(4.15)
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and

0 = i (εk4 + εk3 − εk2 − εk1)G2

(
k†1, k

†
2, k3, k4

)
+λ2

2π

N + 1

∑
α,k

sin
k1πlα
N + 1

sin
kπlα
N + 1

G2

(
k†, k†2, k3, k4

)
+λ2

2π

N + 1

∑
α,k

sin
k2πlα
N + 1

sin
kπlα
N + 1

G2

(
k†1, k

†, k3, k4

)
+λ2

2π

N + 1

∑
α,k

sin
k3πlα
N + 1

sin
kπlα
N + 1

G2

(
k†1, k

†
2, k, k4

)
+λ2

2π

N + 1

∑
α,k

sin
k4πlα
N + 1

sin
kπlα
N + 1

G2

(
k†1, k

†
2, k3, k

)
+λ2

2π

N + 1

∑
α

sin
k2πlα
N + 1

sin
k4πlα
N + 1

G1

(
k†1, k3

)
(n (k2) + n (k4))

−λ2 2π

N + 1

∑
α

sin
k2πlα
N + 1

sin
k3πlα
N + 1

G1

(
k†1, k4

)
(n (k2) + n (k3))

−λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k4πlα
N + 1

G1

(
k†2, k3

)
(n (k1) + n (k4))

+λ2
2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k3πlα
N + 1

G1

(
k†2, k4

)
(n (k1) + n (k3)) (4.16)

Each of these forms a closed linear system of equations and has a unique
solution. Therefore, we only need to find one solution and that must be
the unique solution. We first apply Eq(4.9) to Eq(4.16) to expand G2 into
products of G1. It is then easy to prove that the resulting equation is equiv-
alent with Eq(4.15), meaning that a solution of Eq(4.15) is also a solution

of Eq(4.16). For example, if we collect terms with G1

(
k†2, k4

)
together, we

will have

G1

(
k†2, k4

){
i (ε (k3)− ε (k1))G1

(
k†1, k3

)
−λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k3πlα
N + 1

(n (k1) + n (k3))

+λ2
2π

N + 1

∑
α,k

[
sin

k3πlα
N + 1

sin
kπlα
N + 1

G1

(
k†1, k

)
+sin

k1πlα
N + 1

sin
kπlα
N + 1

G1

(
k†, k3

)]}
, (4.17)
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4.4. Truncation of the hierarchy

where the term in curly brackets is zero according to Eq(4.15). Therefore,
the solutions of Eq(4.15) satisfy Eq(4.16) as well, as long as Eq(4.9), the
non-equilibrium Wick Theorem, holds. Since the combined equation has a
unique solution, the solution with Eq(4.9) valid is the only possible solution.
Therefore, Eq(4.9) is proved.

From this, we also know that for non-interacting systems, it is enough
to solve only for the single-particle Green’s functions, which form a linear
system of equations with N2 unknowns. All higher order Green’s functions
can be factorized in products of various G1.

4.4 Truncation of the hierarchy

As already shown, for interacting systems the equations for all Green’s func-
tions are coupled to one another. In order to solve Eq(4.7) explicitly, we
first have to find explicit forms of the operators m̂ in terms of the operators{
cl, c

†
l

}
. In Appendix A, we present an exact numerical calculation and a

perturbational calculation for these operators. Correspondingly, based on
these two methods of finding the operators m̂, we discuss in this section
two ways of turning Eq(4.7) into a closed equation by approximating the G2

terms. This is the lowest meaningful level of truncation.
We will first discuss a more accurate method, which works for larger

interactions V0, but which is computationally costly: perturbation based on
two-particle Green’s functions at equilibrium. Then we present a relatively
less accurate but computationally much more efficient method, the non-
equilibrium cluster expansion. The latter works only for relatively smaller V0
but can be applied to much larger systems. The values G1

(
m†, n

)
obtained

from both methods will be compared against GEx
1

(
m†, n

)
, the exact solution

of Eq(4.2) via the linear system Eq. (2.89). Finally, we generalize the latter
method by truncating it at the next level. This improves its accuracy and
range of applicability, without sacrificing its efficiency.

4.4.1 Method 1: using equilibrium Green’s functions

As explicitly worked out in Eq(A.2) of Appendix A, the operators m̂ can be
written in terms of eigenmodes of HS , which can be found from an exact
diagonalization of HS . This is a 2N -dimensional eigenvalue problem. Then,
in the language of a super-operator space [88], where operators are treated
like vectors – so called super-vectors – m̂ can be expanded under the basis
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of all polynomials of
{
cl, c

†
l

}
as:

m̂α =
∑
l

dα;lcl + V0Dα (4.18a)

ˆ̄mα =
∑
l

d̄α;lc
†
l + V0D̄α, (4.18b)

where using the definition of inner product between super-vectors 〈〈A|B〉〉 =
tr

(
A†B

)
, we have

dα;l =
1

2(N−1)
tr

(
c†l m̂α

)
, (4.19a)

d̄α;l =
1

2(N−1)
tr

(
cl ˆ̄mα

)
. (4.19b)

Here 2N−1 is a normalization constant to make dα,l = 1 when m̂α = cl.
Also, dα;l and d̄α;l are the expansion coefficients at the linear order in cl and

c†l ; operators V0D and V0D̄ are the remaining terms in the expansion of the
operators m̂ and ˆ̄m, respectively. V0 is explicitly factorized out because of
the fact that when V0 = 0, this remaining part vanishes.

With these expressions for m̂, Eq(4.7) becomes,

0 = it
〈
c†m−1cn

〉
+ it

〈
c†m+1cn

〉
− it

〈
c†mcn+1

〉
− it

〈
c†mcn−1

〉
+λ2

∑
l,α

〈
δnα

(
dα;l + d̄∗α;l

)
c†mcl + δmα

(
d̄α;l + d∗α;l

)
c†l cn

〉
(4.20a)

−λ2
∑
α

[
δmαd̄α;n + δnαd̄

∗
α;m

]
(4.20b)

−iV0
〈
c†mc

†
n−1cncn−1

〉
+ iV0

〈
c†m+1c

†
mcm+1cn

〉
−iV0

〈
c†n+1c

†
mcn+1cn

〉
+ iV0

〈
c†mc

†
m−1cncm−1

〉
(4.20c)

−λ2V0
∑
α

〈
δmαcnD̄α + δnαD̄

†
αc

†
m − δnαc

†
mDα − δmαD

†
αcn

〉
. (4.20d)

Note that every c0, c
†
0, cN+1 and c†N+1 that appears in the equation should

be set to 0. First let us replace all G2s in Eq(4.20c) by their values at equi-

librium, denoted here as G
E,(0)
2 where the superscripts indicate the use of

thermal equilibrium (denoted by superscript E) as the zeroth order approx-
imation (denoted by (0)) of the non-equilibrium G2. Using the first term as
an example,

G
E,(0)
2

(
m†, n

)
= tr

(
c†mc

†
n−1cncn−1ρeq (HS)

)
, (4.21)
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where ρeq (HS) = 1
Z e

− HS
kBT . This requires knowing the eigenstates of HS .

Similarly one can define G
E,(0)
D from Eq(4.20d), using the first term as an

example,

G
E,(0)
D

(
m†, n

)
= δmαtr

(
cnD̄αρeq (HS)

)
. (4.22)

Next let us calculate G
E,(1)
1 from Eq(4.20), where the superscript (1) means

that the approximate calculation takes care of the first equation of the hi-

erarchy, Eq(4.20). We organize all G
E,(1)
1

(
m†, n

)
as a vector,

g
E,(1)
1 =

[
G1

(
1†, 1

)
, G1

(
1†, 2

)
, · · · , G1

(
N †, N

)]T
, (4.23)

and then Eq(4.20) for given values of m,n is the equation occupying the
(mN + n)th row and in total there areN2 such equations. After substituting

G
E,(0)
2 and G

E,(0)
D for the exact but unknown G2 and GD, the whole set of

Eq(4.20) for all m,n becomes a linear system for g
E,(1)
1 with dimension N2,

Γ(1)g
E,(1)
1 = iV0g

E,(0)
2 + λ2ν + λ2V0g

E,(0)
D , (4.24)

where the vector ν comes from ordering Eq(4.20b) in the same way as g
E,(1)
1 .

The same holds for g
E,(0)
2 and g

E,(0)
D correspondingly from ordering Eq(4.20c)

and Eq(4.20d). The matrix Γ(1) is extracted from Eq(4.20a). For example,
assuming m and n are not at the boundaries, one may read from Eq(4.20),

νmN+n =
∑
α

[
δmαd̄α;n + δnαd̄

∗
α;m

]
, (4.25a)

Γ
(1)
mN+n,(m−1)N+n = it. (4.25b)

We can calculate single-particle equilibrium Green’s functions, G
E,(0)
1 , and

organize them in the same way into a vector denoted as g
E,(0)
1 .

We define the distance between two vectors A and B as,

dAB =

√∑
i |Ai −Bi|2√∑

i |Bi|2
. (4.26)

In order to gauge the accuracy, we compare dE,(0), the difference between

the zeroth order g
E,(0)
1 and the exact solution gEx

1 , and dE,(1), the difference

between the first order solution above, g
E,(1)
1 and the exact solution gEx

1 .

Here GEx
(
m†, n

)
= tr

(
c†mcnρex

)
, where ρex is the exact solution from

Eq(4.2).
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4.4. Truncation of the hierarchy

Results

First, we keep V0 = 0.2 as a constant, and check the accuracy of g
E,(1)
1

for different values of ∆T . From Fig.4.1(a) we can see that the worst is
d(1) ≈ 1%. Secondly, we set ∆T = 0.4T as a constant, and check the

accuracy of g
E,(1)
1 for different values of V0. The worst case is d

(1) ≈ 0.3% as
shown in Fig.4.1(b). Overall, the distance dE,(1) is always much smaller than
dE,(0). We also compared the particle current calculated from this Green’s
functions, defined as:

J =
ie

N − 1

N−1∑
l=1

(G (l + 1, l)−G (l, l + 1)) . (4.27)

JE,(0), JE,(1), JEx are calculated respectively from g
E,(0)
1 , g

E,(1)
1 and gEx

1 .
From Fig.4.1(c) and (d) we see that in both cases, JE,(1) is very close to
the exact value, JEx, while JE,(0), the current in the equilibrium state, is
always zero. Very high accuracy is found especially for small ∆T . This
indicates that the approximation captures the essential part of the non-
equilibrium stationary states. It is also worth mentioning that this method
generates reasonable results for very large V0. Furthermore, it is likely that
the approximation could be further improved, by expansions to higher order
polynomials of cl, c

†
l and substitution of their values at equilibrium for the

higher order unknown Green’s functions in the higher-order equations of the
hierarchy. Stopping the expansion of operators m̂ at linear order of V0 is
compatible with solving only the first equation of the hierarchy. If further
equations of the hierarchy are used then one should also expand operators
m̂ to higher orders of V0.

In order to estimate the accuracy of this level of approximation and
also get a rough estimate of the accuracy of higher levels of truncation, we
study the leading order of residues in terms of λ2 and ∆T

T , both of which
are assumed to be small in the following. Thus λ2V0 � V0, therefore we
know that gD is smaller than the g2 term so we drop it. Similarly, since
λ2∆T � ∆T , we drop the λ2∆T term in λ2ν in Eq(4.24),

λ2ν = λ2ν0 (T ) + λ2∆Tν,T , (4.28)

and keep only the large term, λ2ν0 (T ), which is independent of ∆T . Here ν,T
denotes formally a derivative of T on ν — d

dT ν. The general idea is then to

write down equations for gEx
1 and g

E,(1)
1 (as shown in Eq. (C.2) of Appendix

C), and then compare them to get an estimate for ∆
E,(1)
1 = g

E,(1)
1 − gEx

1 . In
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Figure 4.1: g
E,(1)
1 is compared with gEx

1 for interacting systems at non-

equilibrium. dE,(1) (dE,(0)) is the difference between g
E,(1)
1 (g

E,(0)
1 ) and gEx

1

defined using Eq. (4.26). Both dE,(1) and dE,(0) are plotted vs. respectively
∆T in (a) and V0 in (b). In both cases, dE,(1) is much smaller than dE,(0).
In (c) and (d) JE,(0) and JE,(1), plotted vs. respectively ∆T and V0, are
compared against JEx. We see that JE,(0) is zero while JE,(1) is close to
JEx even for relatively large V0. In all these sample calculations, t = 1.0,
λ = 0.1, µ = −1.0.
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order to understand how an approximation to the next order improves the

accuracy, we also want to compare ∆
E,(1)
1 to ∆

E,(0)
1 = g

E,(0)
1 − gEx

1 , which
is estimated in the same way from the difference between the equations

respectively for gEx
1 and g

E,(0)
1 , see Appendix C for further details. Here we

summarize the results, namely

∆
E,(0)
1 = ∆T

(
Γ
(1)
0

)−1
Γ
(1)
,T g

Ex
1 + iV0

(
Γ
(1)
0

)−1
∆

E,(0)
2 (4.29)

and

∆
E,(1)
1 =

(
Γ
(1)
0

)−1
[
−V 2

0

(
Γ
(2)
0

)−1
∆

E,(0)
3

+iV0∆T
(
Γ
(2)
0

)−1
Γ
(2)
,T g

Ex
2 + iV0λ

2
(
Γ
(2)
0

)−1
∆

E,(0)
1

]
. (4.30)

Here ∆
E,(0)
n = g

E,(0)
n − gEx

n and ∆
E,(1)
n = g

E,(1)
n − gEx

n for general n-particle
Green’s functions gn. We refer readers to Appendix C for definitions of all
Γ matrices. Most importantly here we see that (from the last term in Eq.

(4.30)) ∆
E,(0)
1 is multiplied by a small number λ2V0 and then is included into

∆
E,(1)
1 . Furthermore, this relation holds generally for higher-order levels of

this approximation. Judging from this it follows that, as long as λ2V0 � t
the method is very reasonable. As for the other two terms, they can be
regarded as

(
V 2
0 g

Ex
3 + V0g

Ex
2

)
∆T . Therefore, the maximum value of V0

where this method is still accurate is determined by
∣∣gEx

2

∣∣−1
or

∣∣gEx
3

∣∣− 1
2 .

Such limit could be much larger than 1 since roughly
∣∣gEx

n

∣∣ =
∣∣gEx

∣∣n —
smaller for larger n. This explains why this method is applicable even for
V0 larger than t, as we see from Fig.4.1.

Here, we note that since this approximation requires a full diagonaliza-
tion of HS , it is necessarily not efficient for large systems. As a result, we
now discuss another approach, that can be used for much larger systems.

4.4.2 Method 2: the non-equilibrium cluster expansion —
first level

A different way to turn Eq(4.7) into a closed equation is to use the cluster
expansion. Taking G2 as an example, this leads to:

G2

(
m†, n†,m

′
, n

′
)
= −G1

(
m†,m

′
)
G1

(
n†, n

′
)

+G1

(
m†, n

′
)
G1

(
n†,m

′
)
+G2

(
m†, n†,m

′
, n

′
)
. (4.31)
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If we set the part that describes correlations,

G2 → 0 (4.32)

we have an approximative expression of G2 in terms of G1, which allows
us to obtain a close set of equations for G1 (for more details, see below).
This approach can be applied to higher-order Green’s functions, for example
using a similar expansion for G3 in terms of G1 and G2 and setting G3 = 0.
In fact the non-equilibrium Wick’s Theorem proved in Section §4.3 shows
that indeed G2 = 0 when V0 = 0. This makes such expansions plausible for
non-equilibrium Green’s functions. Setting G2 = 0 with V0 6= 0 is similar to
using the Hartree-Fock approximation. Depending on the system and the
physical problem under investigation, one may need to go to the next level
of approximation, i.e. keeping G2 but ignoring G3 to truncate the equation
hierarchy at the level instead of the first one. Here, we will study both levels,
beginning first with the lowest level approximation, i.e. setting G2 → 0.

However, the cluster expansion cannot be applied to the operators D
defined in the previous section. Instead, we have to expand the operators

m̂ in higher-order polynomials of
{
cl, c

†
l

}
. This can be done as follows. In

order to avoid the costly exact diagonalization, the operators m̂ can also
be found analytically using perturbation theory (see Appendix A for full
details). The basic idea is to start by assuming

cl (t) = c
(0)
l (t) + V0c

(1)
l (t) +O

(
V 2
0

)
, (4.33)

and then derive and solve the equations of motion of c
(0)
l , c

(1)
l from Heisen-

berg’s equation. In this way, one avoids the direct diagonalization of HS .
This simplifies the calculation but its accuracy depends on the order of V0
at which the expansion stops. Stopping at the linear order of V0 is compat-
ible with the cluster expansion for G2 (first level of approximation). If the
cluster expansion in a higher-order Green’s functions is applied, then the
operators m̂ should also be expanded to higher orders of V0. Keeping only
the first order, the operators m̂ become

m̂α =
∑
m

Dα;mcm + V0
∑

m1m2m3

Dα;m1m2m3cm1c
†
m2
cm3 +O

(
V 2
0

)
(4.34a)

ˆ̄mα =
∑
m

D̄α;mc
†
m − V0

∑
m1m2m3

Dα;m1m2m3c
†
m3
cm2c

†
m1

+O
(
V 2
0

)
, (4.34b)

where the definitions of Dα;m and Dα;m1m2m3 are given in Appendix A.
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With the first-order cluster expansion and the above expansion of oper-
ators m̂ plugged into Eq(4.7), we have

0 = itG1

(
(m− 1)†, n

)
+ itG1

(
(m+ 1)†, n

)
−itG1

(
m†, n+ 1

)
− itG1

(
m†, n− 1

)
+λ2

∑
l,α

[
δnα

(
Dα;l + D̄∗

α;l

)
G1

(
m†, l

)
+δmα

(
D̄α;l +D∗

α;l

)
G1

(
l†, n

)]
(4.35a)

+λ2V0
∑

α,m1,m2

(Dα;nm2m1 −Dα;m1m2n)G1

(
m†

1,m2

)
δmα

+λ2V0
∑

α,m1,m2

(Dα;mm2m1 −Dα;m1m2m)G1

(
m†

2,m1

)
δnα (4.35b)

−λ2
∑
α

(
δmαD̄α;n + δnαD̄

∗
α;m

)
(4.35c)

+λ2V0
∑
α,m1

(Dα;m1m1nδmα +Dα;m1m1mδnα) (4.35d)

−iV0G
(
m†, (n− 1)†, n, n− 1

)
+iV0G

(
(m+ 1)†,m†, (m+ 1), n

)
−iV0G

(
(n+ 1)†,m†, n+ 1, n

)
+iV0G

(
m†, (m− 1)†, n,m− 1

)
. (4.35e)

Here G2 should be interpreted according to Eq. (4.31) with G2 → 0. This
is the closed system of equations for the unknowns G1. Next we define a

vector g
C,(1)
1 , where as before superscript C means cluster expansion and (1)

symbolizes keeping only the first equation in the hierarchy. For simplicity

we order Eq(4.35e) in the same way and denote it as g
C,(1)
2 = Π

(
g
C,(1)
1

)
,

where Π refers to the nonlinear function — summation of products — of

g
C,(1)
1 in Eq(4.35e). Then the above equation can be written in matrix form
as: (

Γ
(1)
0 + λ2V0Γ

(1)
D

)
g
C,(1)
1 = λ2ν0 + λ2V0ν1 + iV0g

C,(1)
2 , (4.36)

where the five terms are respectively the five sub equations in Eq(4.35), for
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example,

(ν0)mN+n =
∑
α

(
δmαD̄α;n + δnαD̄

∗
α;m

)
. (4.37)

This equation can be solved iteratively

g
[n+1]
1 =

(
Γ
(1)
0 + λ2V0Γ

(1)
D

)−1 (
λ2ν0 + λ2V0ν1 + iV0Π

(
g
[n]
1

))
, (4.38)

starting from the initial value

g
[0]
1 =

(
Γ
(1)
0

)−1
λ2ν0. (4.39)

Here we start from g
[0]
1 = g

C,(0)
1 , which is the exact solution of Eq(4.36) when

V0 = 0. Through the iteration defined above we get the solution g
C,(1)
1 =

limn→∞ g
[n]
1 . In practice we stop at large enough n such that g

[n]
1 − g

[n−1]
1 is

small enough.

Results

Using again Eq. (4.26), we define dC,(0) as the relative distance between

g
C,(0)
1 and gEx

1 , and dC,(1) as the relative distance between g
C,(1)
1 and gEx

1 .

First, we keep V0 = 0.2 as a constant, and check the accuracy of g
C,(1)
1 for

different values of ∆T . From Fig.4.2(a) we see that the worst case is d(1) ≈
1%. Secondly, we set ∆T = 0.4T as a constant, and check the accuracy of

g
C,(1)
1 for different values of V0. The worst case is d(1) ≈ 2% as shown in
Fig.4.2(b). Overall, the difference dC,(1) is always much smaller than dC,(0).
From Fig.4.2(c) we see that for a small V0, J

C,(0) already provides most of the
total current. However, Fig.4.2(d) shows that as V0 increases, the difference
between JC,(1) and JC,(0) grows. We should also note that for larger V0,
JC,(1) starts to deviate from JEx. This indicates that the approximation
captures the essential part of the interaction but it is qunatitatively accurate
only for small V0. Of course, this can be improved by going to the next level
in the trucation, as shown in section 4.4.3.

In order to estimate the accuracy of this approximation, let us assume

that λ2 and V0 are small. We define ∆
C,(0)
n = g

C,(0)
n − gEx

n and ∆
C,(1)
n =

g
C,(1)
n − gEx

n . Again we start from the equations of the three: g
C,(0)
1 , g

C,(1)
1

and gEx
1 (as we have done in Eq. (C.14) of Appendix C), and then compare

them while ignoring certain higher-order, smaller terms such as those which
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Figure 4.2: g
C,(1)
1 is compared with gEx

1 for non-equilibrium interacting
systems. Both dC,(1) and dC,(0) are plotted vs. respectively ∆T in (a) and
V0 in (b). In both cases, dC,(1) is always much smaller than dC,(0). In (c)
and (d) JC,(0) and JC,(1), plotted vs. respectively ∆T and V0, are compared
against JEx. From (c), where V0 = 0.2 and it is relatively small, we see that
for a given value of V0, both J

C,(0) and JC,(1) are consistent with JEx. From
(d) we find that for relatively larger V0, J

C,(1) agrees much better with JEx

than JC,(0).
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4.4. Truncation of the hierarchy

are proportional to λ2V0, see Appendix C for more details. We arrive at:

∆
C,(0)
1 = −iV0

(
Γ
(1)
0

)−1
gEx
2 ∼ V0

∣∣gEx
1

∣∣2 , (4.40)

and

∆
C,(1)
1 =

(
Γ
(1)
0

)−1
[
iV 2

0

(
Γ
(2)
0

)−1
gEx
3

+λ2V0

(
Γ
(2)
0

)−1
∆

C,(0)
1

]
∼ V 2

0

∣∣gEx
1

∣∣3 + λ2V 2
0

∣∣gEx
1

∣∣2 . (4.41)

We refer the readers to Appendix C for definitions of all Γ matrices.

This estimate agrees with the numerical results that ∆
C,(0)
1 is propor-

tional to V0 while ∆
C,(1)
1 is proportional to V 2

0 . Most importantly, we

see again that ∆
C,(0)
1 is multiplied by a small number λ2V0 and then be-

comes a part of ∆
C,(1)
1 . Since roughly

∣∣gEx
n

∣∣ =
∣∣gEx

∣∣n, the other term,

V 2
0 g

Ex
3 ∼ V 2

0

∣∣gEx
1

∣∣3, is also much smaller than ∆
C,(0)
1 ∼ V0

∣∣gEx
1

∣∣2. However,
for large enough V0 the other approximation used in this method, the per-
turbational expansion of the operators m̂, becomes invalid. Therefore, as
long as V0 � t this level of approximation is expected to be very reasonable.
It should be noted that this method is capable of dealing with large systems
since it does not require a direct diagonalization of a 2N -dimension matrix,
like the previous method. Instead, it deals with vectors of dimension N2.

4.4.3 Method 2: second-level cluster expansion

In the previous section, we showed that even truncation at first level leads
to quite accurate results, and a very efficient method. Here, we discuss the
truncation at the second level of the BBGKY hierarchy. This requires us
to keep G2 as unknowns in the equations which now include the equations
for G2, while letting G3 = 0 in order to truncate the resulting larger sys-
tem. While the first-level approximation is equivalent to the Hartree-Fock
approximation, this second-level form goes beyond that. The cluster expan-
sion of G3 [94] expresses it in terms of G1, G2 and G3 (see Appendix B for
the explicit expression):

G
(
m†

1,m
†
2,m

†
3,m4,m5,m6

)
=

∑
P

(−1)PG1G1G1 +
∑
P

(−1)PG1G2

+G3

(
m†

1,m
†
2,m

†
3,m4,m5,m6

)
. (4.42)
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Here
∑

P (−1)PG1G1G1 is a short-hand notation for the various ways of

pairing {m†
1,m

†
2,m

†
3,m4,m5,m6} into three groups using G1 and taking care

of the anti-commutation relations, for example

G1

(
m†

1,m6

)
G1

(
m†

2,m5

)
G1

(
m†

3,m4

)
. (4.43)

Similarly
∑

P (−1)PG1G2 denotes all different ways of pairing these into two
groups using G1 and G2, for example

G1

(
m†

1,m6

)
G
(
m†

2,m
†
3,m4,m5

)
. (4.44)

Setting G3 → 0, we aim to derive a close system of equations for G1

and G2 from Eq. (4.7) and Eq. (4.8). In order to be consistent, i.e. so
that all terms lower than G3 should be included in both equations, bath
operators m̂α should be truncated to second order, i.e. at terms proportional
to V 2

0 . However, including the V 2
0 terms greatly complicates both equations

(see Appendix B for details). Therefore, here we use only the expression
of operators m̂α truncated at the first order of V0. In this case, Eq. (4.7)
becomes an equation very similar to Eq. (4.35) but with a different meaning
for G2: G2 should be interpreted according to Eq. (4.31) with explicit G2

included. We denote this, using compressed notations similar to the ones in
Eq. (4.24) and Eq. (4.36), as

Γ(1)g1 = λ2ν0 + λ2V0ν1 + iV0π (g1g1) + iV0g2. (4.45)

Note that now we have an additional term iV0g2, so this is not a closed
equation by itself. Here π (g1g1) is the short-hand notation for the combi-
nations of products between g1 and g1 the cluster expansions in Eq. (4.31).
Meanwhile, Eq. (4.8) becomes,

Γ(2)g2 = −Γ(2)π (g1g1) + λ2g1 + λ2V0g1

+iV0π (g1g1g1) + iV0π (g1g2) , (4.46)

such that we get a closed system of equations when we combine the two
sets. The explicit form of this latter equation can be found in Appendix B.
Here π (g1g2) is the short-hand notation for the combinations of products
between g1 and g2 from Eq. (4.42). Same holds for π (g1g1g1). The matrices
Γ(1) and Γ(2) come from the following terms

Γ(1) = Γ
(1)
H0

+ λ2Γ
(1)
B0

+ λ2V0Γ
(1)
B1
, (4.47a)

Γ(2) = Γ
(2)
H0

+ iV0Γ
(2)
V + λ2Γ

(2)
B0

+ λ2V0Γ
(2)
B1
. (4.47b)
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Figure 4.3: G1 calculated with different levels of the approximations are

compared. d
(2)
1 is plotted in addition to the previous shown d

(1)
1 and d

(0)
1 .

We see that the distance d
(2)
1 is smaller than, but rather close to d

(1)
1 , while

both are much smaller than d
(0)
1 .

The various Γs are obtained by considering only the term indicated by their

subscripts. For example, Γ
(1)
H0

is the one derived from H0 only, without using

the potential V and bath operators m̂α, while λ
2Γ

(1)
B0

(λ2Γ
(1)
B1

) is related to
the component of the bath operators that is of the zeroth (first) order in
V0. The combination of Eq. (4.45) and Eq. (4.46) is a closed system for g1
and g2. Solving it gives us results of the second-level cluster expansion, and
provides finite values for G2. In other words, explicit correlations are built
in, and thus this method goes well beyond the Hartree-Fock approximation.

In the following we are investigate how large are these G2 and also what
is the gain in accuracy when compared against exact numerical solutions,
and against the first-level truncation.

First, we define d
(2)
1 to be the difference between the G1 calculated from

this second-order cluster expansion and the exact G1, similarly as dC,(1),

which is now denoted as d
(1)
1 . In Fig.4.3 we find that d

(2)
1 is smaller than

but very close to d
(1)
1 . This means that the second-order cluster expan-

sion has better accuracy, but quantitatively does not lead to a significant
improvement of G1.
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Figure 4.4: G2 calculated with different levels of the approximations are

compared. d
(2)
2 is plotted v.s. ∆T and V0. We see that d

(2)
2 is significantly

smaller than d
(1)
2 .

Second, in the same way, we define d
(2)
2 and compare the differences be-

tween G2s calculated from the various truncations to the exact G2. From
Fig.4.4 we find that the second order truncation leads to a sizable improve-
ment in G2.

To find how significant is this difference for physical quantities, we com-
pare the currents calculated from the approximations and exact calculation.
In order to enhance these differences, we increase the coupling constant to
λ = 0.5 in the following figures. This is because the absolute value of the
particle current depends very strongly on the value of λ (J ∝ λ2). For the
same purpose we have also set V = 0.8 instead of V = 0.4 when checking
the ∆T dependence.

Figure 4.5 shows that the agreement between J (2) and JEx is much better
than the one between J (1) and JEx, especially for larger V0. This proves
that the correlations kept at the second-level truncation are important for
an accurate description of the transport properties.

Since the second-level approximation allows us to calculate G2 — the
correlated part of G2 – we also consider the heat current, a physical quantity
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Figure 4.5: Particle currents, J (2), J (1), J (0), calculated respectively from
the second-, first- and the zeroth-order truncations are compared against
JEx, which is found from the exact diagonalization method. For all the
range of V0 shown in this figure, J (2) is very close to JEx, while J (1) is
accurate only for small V0.
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Figure 4.6: Heat currents, J
(2)
h , J

(1)
h , J

(0)
h are compared against JEx

h . For all

range of V0 shown in this figure, J
(2)
h is close to JEx

h . Jh depends strongly
on G2 while particle current J in the previous figure relies on G1.

making explicit use of G2:

〈Jh〉 =
−2

N − 2

N−2∑
l=2

Im
[
t2G1 (l − 1, l + 1)

+V tG2 (l − 1, l + 1; l, l + 1) + V tG2 (l − 1, l + 1; l, l − 1)] , (4.48)

which is derived from

Jh =

N−2∑
l=2

i
[
hBl−1, h

B
l

]
(4.49)

and

hBl = −tc†l cl+1 − tc†l+1cl + V c†l clc
†
l+1cl+1. (4.50)

Again, we find from Fig.4.6 that the agreement between J
(2)
h and JEx

h is

much better than the one between J
(1)
h and JEx

h , especially for larger V0.
This indicates that the finite G2 are essential for getting proper values of
heat currents.
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4.5. Conclusion and discussion

Keeping orders of V 2
0 in the bath operators m̂α is consistent with trun-

cation at G3 = 0 and may improve accuracy for the second-level truncation
even further. However, including these terms greatly complicates the linear
equation for G2, so that it has about 200 different terms (see Appendix A
for more details). An investigation of their effect on the overall results is
left as future work.

4.5 Conclusion and discussion

To conclude, a BBGKY-like equation hierarchy is derived from the Redfield
equation and two systematic approximations are suggested to truncate and
solve the hierarchy. Using the first-level of the first method and both the
first- and the second-levels of the second method, non-equilibrium station-
ary states of interacting systems are calculated. It is found these are in
good agreement with exact results, for small systems where the latter are
available. We also estimated the accuracy of the two approximations.

We find that the first method works for strong interaction V0. However,
because it requires an explicit diagonalization of the Hamiltonian, it is less
computationally efficient. We imagine this method being used to study, for
example, systems of a few strongly coupled quantum dots which have large
charging energies.

The second method is much more efficient and therefore it can be ap-
plied to much larger systems, but its accuracy decreases with increasing
interaction strength V0. However, truncation at a higher level is shown to
significantly improve both its accuracy, and its range of validity. Even at the
second level, good accuracy for physical quantities is seen up to rather high
values of V0 and ∆T , and the results have the correct trends even when they
become quantitatively less accurate. It is likely that going to even higher
levels of truncation further improves accuracy, although, of course, this also
leads to significantly more involved computations.

In future work, one can investigate the generalization to higher level trun-
cations. Even more interesting, however, is the application of this method
to physical problems.
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Chapter 5

Solving the Redfield
equation using coherent-state
representations

5.1 Introduction

In quantum optics, a common technique to solve quantum master equations
for density matrices is to use the coherent-state representation [70]. Quite of-
ten a quantum master equation for a single photon (boson) mode is solved in
the coherent-state representation, where the operator-form quantum mas-
ter equation becomes a differential equation of c-numbers and a density
operator becomes a “distribution” function. The problem of the Hilbert
space’s infinite dimension is bypassed. For example, a distribution function
over N complex numbers is sufficient to describe a N -site Bose-Hubbard
model [96, 97]. The equations for these distribution functions can be solved
analytically or through numerical simulations of certain equivalent stochas-
tic differential equations such as Langevin equations (see Refs. [70, 98] and
also Appendix E for the relation between generalized Fokker-Planck equa-
tions and Langevin equations).

A common coherent-state representation is the P -representation (see
Ref [70] and also the Appendix D for details on various forms of coherent-
state representations). In the P -representation coherent eigenvalues ξ and
ξ∗ are treated as conjugate complex numbers, thus one solves only the equa-
tions for ξ. Sometimes it is also useful to work with generalizations of the
P -representation [70]. In fact, the generalized P -representation, where co-
herent eigenvalues ξ and ξ∗ are treated independently, has been used in sim-
ulations of both thermal equilibrium and dynamical evolution of quantum
systems (see for example [72] and references therein). It has been shown
that this approach is capable of dealing with the pure dynamical evolution
of an interacting quantum system with 150000 atoms and 106 momentum
modes [75]. The work presented in this chapter can be regarded as an ex-
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5.1. Introduction

tension of this method from simulations of equilibrium and pure dynamical
states to simulations of non-equilibrium stationary states.

Thus, in this chapter we introduce another efficient method to solve
the Redfield equation: using the coherent-state representation, the Redfield
equation is mapped onto a generalized Fokker-Planck equation. For non-
interacting systems, analytical results are obtained for the non-equilibrium
stationary states. For interacting systems, we find that the resulting equa-
tions can be solved efficiently via classical simulations.

The existence of a general distribution function for systems in thermal
equilibrium, which depends only on the Hamiltonian and the temperature,
greatly simplifies the calculation of equilibrium properties. However, there
is no known general distribution for non-equilibrium stationary states. For
each problem, therefore, one has to calculate the distribution from a quan-
tum master equation, such as the Redfield equation, which is capable of
taking into account the role of the baths, besides the central system.

However, we have seen in the previous chapters that it is very hard to
solve the Redfield equation efficiently. The fact that there is no analytical
expression for non-equilibrium stationary states may simply be due to the
technical difficulty in solving the quantum master equation. A more effi-
cient way of solving this equation might lead to different results, or maybe
to a proof that there is no general expression describing non-equilibrium
stationary states. In this chapter, using the coherent-state representation,
we derive an analytical expression for non-equilibrium stationary states of
non-interacting systems. The question of finding such non-equilibrium sta-
tionary states for non-interacting systems has been numerically investigated
via the time-dependent density matrix renormalization [99, 100], however
for the local-operator Lindblad equation instead of the Redfield equation.

The focus of this chapter, however, is to study the efficiency of this
approach when applied to interacting systems.

The chapter is organized as follows. In section 5.2, we introduce the
model system, define its Redfield equation and then convert the operator-
form Redfield equation into a differential equation in the coherent-state rep-
resentation. We find the mapped equation to be in the form of a generalized
Fokker-Planck equation. We then proceed to find analytical solutions of the
generalized Fokker-Planck equation for non-interacting systems in Section
5.3. In Section 5.4, we show that the same BBGKY-like hierarchy can be
derived from the generalized Fokker-Planck equation as from the original
Redfield equation. This provides further support for the work presented
in the previous chapter. In section 5.5, we solve the generalized Fokker-
Planck equation via numerical simulations for interacting bosonic systems.
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The method is also applicable to other quantum master equations such as
the local-operator Lindblad equation, as we demonstrate in section 5.6. In
section 5.7, we conclude that this new method based on the coherent-state
representation leads to analytical solutions for non-interacting systems and
comment on its possible further development and applications.

5.2 The model and its effective equation of
motion

For concreteness, the system of interest in this chapter is a 1-D Bose-
Hubbard chain [96, 97] coupled to a bath at each of its ends. The left
(right) bath is maintained at temperature TL = T + ∆T

2 (TR = T − ∆T
2 ). We

are interested in the stationary state of the central system. The Hamiltonian
of the central system (HS), the baths (HBα) and the couplings (HSB) are,
respectively:

HS = H0 + VS =
N−1∑
l=1

(
a†l al+1 + a†l+1al

)
+
U

2

N∑
l=1

nl (nl − 1) , (5.1a)

HB =
∑
k,α

ωk,α

(
b†k,αbk,α + 1

)
, (5.1b)

HSB = λ
∑

k,α=L,R

(
V α
k a

†
αbk,α + h.c.

)
. (5.1c)

Note that only the ends are coupled to baths (α = L,R): aL = a1, aR = aN
etc. The system of interest, the Bose-Hubbard chain, has been realized
experimentally [97].

Neglecting the shift of the spectrum of the central system due to the
coupling to the baths, the Redfield equation reads, from Eq. (2.48):

∂ρ(t)

∂t
= −i[HS , ρ(t)]

−λ2
∑

α=L,R

{[
a†α, m̂αρ(t)

]
+
[
aα, ˆ̄mαρ(t)

]
+ h.c.

}
, (5.2)
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5.2. The model and its effective equation of motion

where m̂L(m̂R) is related to a1(aN ) while ˆ̄mL( ˆ̄mR) is related to a†1(a
†
N ),

m̂α =
∑
k

|V α
k |2

∫ ∞

0
dτaα (−τ) e−iωk,ατ 〈1 + n (ωk,α)〉, (5.3a)

ˆ̄mα =
∑
k

|V α
k |2

∫ ∞

0
dτa†α (−τ) eiωk,ατ 〈n (ωk,α)〉. (5.3b)

Here 〈n (ωk,α)〉 =
(
e

ωk,α−µα

Tα + 1

)−1

is the Bose-Einstein distribution for the

bath modes. Note that later we will switch the summation over momentum
k into an integral over energy ε, which involves a density of states D (ε).
Generally both D (ε) and |V α

k |2 may depend on ε. However, for simplicity
we set the density of state and also |V α

k |2 to constants and absorb them into
the coupling constant λ.

Next we map the Redfield equation into a differential equation in the
coherent-state representation. A similar approach has been used in earlier
works mentioned in Ref. [72]. However, they are based on different equa-
tions of motion, such as the pure dynamical equation or the local-operator
Lindblad equation [90] with bath temperature set at zero, while we use the
Redfield equation for finite bath temperatures. From a technical point of
view, in the coherent-state representation it is easier to deal with the local-
operator Lindblad equation than the Redfield equation. However, we have
shown in section 2.5 of chapter 2 that in order to get proper non-equilibrium
stationary states, it is necessary to use the more complicated Redfield equa-
tion.

As we demonstrated in Appendix A, for fermions the operators m̂ and ˆ̄m
can be derived perturbationally to avoid direct diagonalization of HS . Here
we apply the same procedure for bosons. Assuming that the Hubbard U is
small, we may solve the Heisenberg equation order by order to get

al (t) =
∑
n

Una
(n)
l (t) , a†l (t) =

∑
n

Una
†,(n)
l (t) , (5.4)

and then carry out the integrals to get the operators m̂ and ˆ̄m.
An important observation is that when U = 0 the problem is exactly

solvable and al (t) (a
†
l (t)) is a linear combination of all am (a†m),

al (t) = a
(0)
l (t) =

2

N + 1

∑
km

sin
πkl

N + 1
sin

πkm

N + 1
e−iεktam, (5.5)
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where εk = 2 cos kπ
N+1 . This is because for finite-size systems with free ends,

the Fourier transform is discrete and eikl is replaced by the sin πkl
N+1 wave-

function, see for example Eq. (A.4).
For interacting systems, in principle it is possible to perform this pertur-

bational calculation up to a large n, however here we will stop at the first

order, a
(1)
l (t),

a
(1)
l (t) = i

∫ t

0
dτ

(
a
†,(0)
l (τ) a

(0)
l (τ) a

(0)
l (τ)

)
. (5.6)

After some tedious but straightforward algebra( see Ref. [101] and also Ap-
pendix A for details), we find, to the linear order in U , that:

m̂α =
∑
m

Dα;mam + U
∑

m1m2m3

Dα;m1m2m3a
†
m1
am2am3 +O

(
U2

)
(5.7a)

ˆ̄mα =
∑
m

D̄α;ma
†
m + U

∑
m1m2m3

Dα;m1m2m3a
†
m3
a†m2

am1 +O
(
U2

)
, (5.7b)

where

Dα;m = π
2

N + 1

∑
k

sin
πklα
N + 1

sin
πkm

N + 1
[1 + n (εk, Tα, µα)] , (5.8a)

D̄α;m = π
2

N + 1

∑
k

sin
πklα
N + 1

sin
πkm

N + 1
n (εk, Tα, µα) , (5.8b)

Dα;m1m2m3 = π

(
2

N + 1

)4

·
∑

k,m,k1,k2,k2

n (ε (k2) + ε (k3)− ε (k1) , Tα, µα)− n (ε (k) , Tα, µα)

ε (k2) + ε (k3)− ε (k1)− ε (k)

· sin πklα
N + 1

sin
πkm

N + 1
sin

πk1m1

N + 1
sin

πk2m2

N + 1

· sin πk3m3

N + 1
sin

πk1m

N + 1
sin

πk2m

N + 1
sin

πk3m

N + 1
. (5.8c)

Here n (ε, T, µ) is the average Bose-Einstein occupation number of a state
with energy ε, temperature T and chemical potential µ.

Next, as summarized in Appendix D, the creation and annihilation oper-
ators a†l and al become differential operators in the coherent representation,
for example:

a†l ρ↔
(
ξ∗l −

∂

∂ξl

)
P
(
~ξ
)
. (5.9)
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5.2. The model and its effective equation of motion

Using the above approximation for the operators m̂α and the transformation
from creation/annihilation operators to differential operators, Eq.(5.2) be-
comes, in the coherent P -representation, a generalized Fokker-Planck equa-
tion,

∂P

∂t
=

(
LH0 + ULV + λ2L

(0)
B + λ2UL

(1)
B

)
P. (5.10)

where

LH0 =

N−1∑
l=1

[
i

∂

∂ξl+1
ξl + i

∂

∂ξl
ξl+1 + c.c.

]
, (5.11a)

LV =

N∑
l=1

[
−i ∂

2

∂ξ2l

ξ2l
2

+ i
∂

∂ξl

(
ξ∗l ξ

2
l

)
+ c.c.

]
, (5.11b)

L
(0)
B =

∑
α,m

[(
Dα,m − D̄α,m

) ∂

∂ξα
ξm + D̄α,m

∂2

∂ξα∂ξ∗m
+ c.c.

]
, (5.11c)

L
(1)
B =

∑
α,mi

Dα,m1m2m3

[
∂2

∂ξα∂ξ∗m2

ξ∗m1
ξm3

+
∂2

∂ξα∂ξ∗m3

ξ∗m1
ξm2 −

∂2

∂ξα∂ξm1

ξm2ξm3 + c.c. (5.11d)

− ∂3

∂ξ∗α∂ξm2∂ξm3

ξm1 + c.c.

]
. (5.11e)

Here c.c. refers to the complex conjugate and it is performed formally, e.g.

−i ∂
∂ξ∗l+1

ξ∗l is the c.c. of i ∂
∂ξl+1

ξl. The last term, Eq. (5.11e), of L
(1)
B is

separated from the other terms intentionally for reasons that will become
apparent soon.

If only equilibrium states are of interest, then the first and second term
can be discarded since equilibrium states commute with HS . However, for
non-equilibrium stationary states those terms are important. Setting ∂

∂tP =

0, we get the stationary state P
(
~ξ,∞

)
, which in the following is denoted

simply as P
(
~ξ
)
. Next, we will calculate the stationary of Eq. (5.10). We

first discuss non-interacting systems and then turn to interacting ones.
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5.3. Exact solution for non-interacting systems

5.3 Exact solution for non-interacting systems

For U = 0 only the terms LH0 and L
(0)
B contribute, and the stochastic

equation is a Fokker-Plank equation [98], in terms of complex variables:

∂

∂t
P =

∑
i,j

[
− ∂

∂ξi
Γijξj +

∂2

∂ξi∂ξ∗j
Dij∗ + c.c.

]
P. (5.12)

For our specific case of a non-interacting system we have:

Γlm = −i (δl,m−1 + δl,m+1)−
∑
α,m

λ2πδlαδαm, (5.13)

and

Dlm∗ =
1

2
λ2

∑
α

(
D̄α,lδmα + D̄α,mδlα

)
. (5.14)

Note that we have verified that D† = D .
This is in fact a standard Fokker-Planck equation (FPE) for the Ornstein-

Uhlenbeck process. Such a FPE can be solved analytically [70, 98]. Its
stationary solution is found to be a Gaussian function:

P
(
~ξ
)
=

1

Z
e−

1
2
ξ†σ−1ξ, (5.15)

where Z is a normalization constant and

Γσ + σΓ† + D = 0, (5.16)

which has the solution,

σ = −
∑
l,m

1

κl + κ∗m
〈νl |D | νm〉 |µl〉〈µm| . (5.17)

Here κ, |µ〉 , 〈ν| are respectively the eigenvalues, right eigenvectors and left
eigenvectors of Γ and 〈µ| , |ν〉 are the complex conjugate of the two cor-
responding vectors. This expression is correct for both equilibrium and
non-equilibrium states. The only difference is in the matrix D, in whether
TL is the same as, or is different from TR. The only needed numerical task is
to find an eigenvector decomposition of Γ, an N -dimensional matrix. Once
σ is known, all correlation functions can be calculated, in particular the
single-particle Green’s function is G

(
l†,m

)
= 〈ξ∗l ξm〉 = 2σlm.
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5.3. Exact solution for non-interacting systems

Next we work out explicitly the distribution function for a two-site
(N = 2) sample system to firstly confirm that it leads to the proper ther-
mal equilibrium, and secondly to show the general procedure to find such
a distribution function. It should be emphasized that the dimension of the
space grows linearly with system size, so we chose to work with N = 2
just because it is easier to get some intuitive picture, not because of algo-
rithm complexity issues. In principle, for two-site systems we need to work
with 4-dimensional matrices, but for non-interacting systems they reduce to
2-dimensional matrices. We have for this specific case,

Γ =

[
−λ2π −i
−i −λ2π

]
,D =

[
D11 D12

D12 D22

]
, (5.18)

where

D11 = λ2π
n(1, TL, µL) + n(−1, TL, µL)

2
,

D12 = λ2π
n(1, TL, µL)− n(−1, TL, µL) + n(1, TR, µR)− n(−1, TR, µR)

4
,

D22 = λ2π
n(1, TR, µR) + n(−1, TR, µR)

2
.

(5.19)

¿From this we get the stationary distribution,

σ =
1

4λ2π

[
D11 + D22 2D12

2D12 D11 + D22

]
+

D11 − D22

4 (λ4π2 + 1)

[
λ2π −i
i −λ2π

]
.

(5.20)

For equilibrium states TL = TR = T , µL = µR = µ and therefore D11 = D22,
so that

P
(
~ξ
)
∝ e

− 1
n(1,T,µ)

ξ∗1+ξ∗2√
2

ξ1+ξ2√
2

− 1
n(−1,T,µ)

ξ∗1−ξ∗2√
2

ξ1−ξ2√
2 , (5.21)

which is exactly the P -representation form of the Boltzmann distribution
in terms of the eigenmodes a1±a2√

2
with eigenenergies ±1. Note that this is

independent of the coupling constant λ since the second term in σ vanishes
and the λ2 in the first term cancel out. This confirms that the equilibrium
state of the central system does not depend on the details of the coupling
between the system and the baths. However, this is unique for equilibrium
states. A general NESS does depend on λ. In fact, the non-equilibrium part
D1,1 −D2,2 ∝ λ2. In the following calculation, a relatively large λ is used in
order to enhance this non-equilibrium part.
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5.4. Interacting systems: BBGKY-like hierarchy derived from the GFPE

Next we compare correlations from the non-equilibrium distribution with
correlations calculated with the BBGKY-like method discussed in the pre-
vious chapter [101]. Numerical exact solution for non-interacting systems
have been reported in Refs. for the Redfield equation. For non-interacting
systems, the BBGKY method can be solved exactly. Here we use it as a
reference to check the analytical solution for non-interacting systems. We
denote the single-particle correlation functions calculated from the above
analytical solution of generalized Fokker-Planck equation, respectively from
the numerical solution of the BBGKY-like method as Gre,An

1 and Gre,B
1 .

Similar notations are used for particle currents Jre,An and Jre,B. We mea-
sure the difference between the two correlations, for example the analytical
solution and the BBGKY solution, through,

dre,An
B =

√∑
l,m

∣∣∣Gre,An
1 (l†,m)−Gre,B

1 (l†,m)
∣∣∣2√∑

l,m

∣∣∣Gre,B
1 (l†,m)

∣∣∣2 . (5.22)

In Fig.5.1, we compare this analytical solution and the BBGKY-like nu-
merical results for the Redfield equation. Since dre ≈ 0, the two methods are
indeed equivalent. The inset shows that currents calculated from both meth-
ods also agree. This validates the fact that the generalized Fokker-Planck
equation approach produces accurate results at least for non-interacting sys-
tems. In the same figure, we also plot dre,nuB and Jre,nu, which are obtained
from a numerical solution that will be discussed in detail in section 5.4.
There is a small but finite distance between the two correlation functions,
however this has no contribution to the current, which is found to be in
good agreement with the exact solution.

5.4 Interacting systems: BBGKY-like hierarchy
derived from the generalized Fokker-Planck
equation

For central systems with interactions, Eq.(5.10) is a generalized Fokker-
Planck equation which has additional triple derivative terms added to the
standard Fokker-Planck equation. It is still possible to solve directly this
generalized Fokker-Planck equation via a set of equivalent stochastic differ-
ence equations, which are generalizations of the Langevin equation [98, 102].
We will discuss this technique in the next section §5.5. Before doing that,
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Figure 5.1: Analytical solution of the generalized Fokker-Planck equation is
compared against the BBGKY numerical solution for non-interacting sys-
tems. The red (circles) curve in the main plot shows the comparison between
the above analytical solution and the BBGKY-like numerical solution of the
Redfield equation. Both Green’s functions (dre,An

B , main panel) and particle
currents (Jre,An and Jre,B, inset) exactly agree with each other. The blue
(square) curve is a comparison between a numerical simulation, to be dis-
cussed in §5.4, and the BBGKY solution. Here we find that the numerical
simulation agrees with analytical solution quite well. Other parameters are
λ = 0.5, T = 2.0, µ = −2.0.
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5.4. Interacting systems: BBGKY-like hierarchy derived from the GFPE

we verify here that the same equation hierarchy as the one presented in the
previous chapter can also be derived from this generalized Fokker-Planck
equation. The derivation of the BBGKY equations for bosonic systems mir-
rors that of the previous chapter, and can be found in Appendix F.

We focus again only on the single-particle stationary state Green’s func-

tions G
(
l†;n

)
, defined as 〈ξ∗l ξn〉 =

∫
d~ξξ∗l ξnP

(
~ξ
)
. Let us then derive a

set of equations for them from the generalized Fokker-Planck equation, Eq.
(5.10). For example, consider a first-order derivative term in Eq. (5.11b).
After performing a partial integration, we have,∑

m

∫
d~ξξ∗l ξni

∂

∂ξm

(
ξ∗mξ

2
mP

(
~ξ,∞

))
= −i

∑
m

∫
d~ξP

(
~ξ,∞

)
ξ∗mξ

2
m

∂

∂ξm
(ξ∗l ξn)

= −i
∫
d~ξP

(
~ξ,∞

)
ξ∗l ξ

∗
nξ

2
n

= −i
〈
ξ∗l ξ

∗
nξ

2
n

〉
. (5.23)

Therefore, setting ∂
∂t〈ξ

∗
l ξn〉 to zero, we have

0 = −i〈ξ∗l ξn+1〉 − i〈ξ∗l ξn−1〉+ i〈ξ∗l+1ξn〉+ i〈ξ∗l−1ξn〉 (5.24a)

+λ2
∑
α,m

(
D̄α,m −Dα,m

)
[δnα〈ξ∗l ξm〉+ δlα〈ξ∗mξn〉] (5.24b)

+λ2
∑
α

(
D̄α,nδlα + D̄α,lδnα

)
(5.24c)

+iU〈ξ∗l ξ∗l ξlξn〉 − iU〈ξ∗l ξ∗nξnξn〉 (5.24d)

+λ2U
∑
α,mi

Dα,m1m2m3

[
δnα

(
〈ξ∗m1

ξm2〉δlm3 + 〈ξ∗m1
ξm3〉δlm2

)
+δlα

(
〈ξ∗m2

ξm1〉δnm3 + 〈ξ∗m3
ξm1〉δnm2

)]
. (5.24e)

This is exactly the same with Eq. (4.7). This confirms that the BBGKY-
like hierarchy method and the generalized Fokker-Planck equation in the
coherent-state representation are equivalent, as expected. Next, we discuss
how to solve numerically the generalized Fokker-Planck equation. Results
from the BBGKY-like method will be used as a reference.
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5.5. Approximate numerical solution for interacting systems

5.5 Approximate numerical solution for
interacting systems

The generalized Fokker-Planck equation, Eq.(5.10), has triple derivative
terms. The Pawula theorem [98] states that a distribution function with
negative values will arise from a generalized Fokker-Planck equation with
a finite series of derivatives beyond the second order. This does not, how-
ever, rule out the possibility that a generalized Fokker-Planck equation with
an infinite series of derivatives may lead to a positively valued distribution
function. Our Redfield equation is, in principle, such a generalized Fokker-
Planck equation with infinite derivatives, if all terms in the expansion of the
m̂ operators are kept. A truncation at a certain finite order might provide a
more accurate result than a truncation at the second order, but the resulting
distribution function will have negative values in some small regions. Ref.
[98] presented such an example. Of course, new techniques are required to
solve such generalized Fokker-Planck equation. Besides the example from
Ref. [98], Ref. [102] proposed a set of equivalent stochastic difference
equations for a generalized Fokker-Planck equation with triple derivative
terms. The authors showed that a better distribution function than the one
obtained after truncating at second derivatives, is given by their technique,
which is based on a specific kind of stochastic difference equation [102].
However, this technique is still under development and discussion.

One may totally avoid such triple derivative terms by using generalized
Gaussian phase-space method [72] or applying the phase-space method to
the whole composite system [103]. Especially with the latter approach, one
can simulate the dynamics of the whole system instead of that of the central
system only. Of course, in this case, the baths will be treated as large but
finite systems. Another benefit of this approach is that one could also go
beyond Markov approximation.

On the other hand, one should also note the possibility that drop-
ping such triple derivative terms may be appropriate in certain circum-
stances [104]. For example, in Eq. (5.24) — the first-order BBGKY equa-
tion derived above for two-variable (corresponding to single-particle) corre-
lations, we see that these third-order terms are not in the equation explicitly.
They appear only in equations of three-or-more-variable correlations, for ex-
ample in the equation of four-variable correlations, which itself appears in
the equation of two-variable correlation. Therefore such third order terms
affect two-variable correlations, but indirectly via four-variable correlations.
Following this line of logic we have assumed that odd-number-variable cor-
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relations vanish.
Since the hierarchical cluster expansion method [101] generally relates

higher order correlations to lower ones, if one truncates it at a certain order
as we do here, one captures certain aspects of the interaction although not its
whole effects. This is better than not taking the interaction in consideration
at all. In this sense, neglecting the third order terms is equivalent to the
first order of the cluster expansion, where the four-variable correlations are
approximated by products of two-variable ones such that effects of the third
order derivatives are neglected.

To summarize, in the rest of this chapter we will neglect all third order
derivatives in the generalized Fokker-Planck equation, Eq.(5.10). The effects
of their inclusion will be the topic of further investigations.

For our specific two-site interacting system, a classical simulation of the
generalized Fokker-Planck equation without the third order derivatives can
be casted into the following form,

∂

∂t
P =

∑
i,j

[
− ∂

∂ξi
Γ
(2)
ij ξj −

∂

∂ηi
Γ
(2)
i∗j∗ηj

+
∂2

∂ξi∂ξj
D

(2)
ij +

∂2

∂ηi∂ηj
D

(2)
i∗j∗ (5.25)

+
∂2

∂ξi∂ηj
D

(2)
ij∗ +

∂2

∂ηi∂ξj
D

(2)
i∗j

]
P, (5.26)

where we have replaced ξ∗i with ηi and treat them as independent variables.
This treatment in fact means that we are now working in the positive-P
representation [70, 73]. For non-interacting systems, the diffusion matrix D
is always positive definite so that we can work with the P representation.
For interacting systems, however, D is not positive definite therefore we
have to use the more general representation. Here we use the the positive-

P representation. We denote the coefficients as Γ
(2)
ij , Γ

(2)
i∗j∗ and D

(2)
ij , D

(2)
i∗j ,

D
(2)
ij∗ , D

(2)
i∗j∗ . In principle, there could also be terms such as − ∂

∂ξi
Γ
(2)
ij∗ηj , but

for this specific problem such terms do not appear. The explicit definitions
of those coefficients are,

Γ
(2)
ij = Γij + iUξiηiδij ,Γ

(2)
i∗j∗ = (Γij)

∗ − iUξiηiδij , (5.27)

and

D
(2)
ij = −iU

2
ξ2i δij −

λ2U

2

∑
α,m1,m2

(Dα,j,m1,m2δα,i +Dα,i,m1,m2δα,j) ξm1ξm2 ,

(5.28a)

91



5.5. Approximate numerical solution for interacting systems

D
(2)
i∗j∗ = i

U

2
η2i δij −

λ2U

2

∑
α,m1,m2

(Dα,j,m1,m2δα,i +Dα,i,m1,m2δα,j) ηm1ηm2 ,

(5.28b)

D
(2)
ij∗ = D

(2)
j∗i = Dij∗ +

λ2U

2

∑
α,m1,m2

[(Dα,m1,j,m2 +Dα,m1,m2,j) δα,i

+(Dα,m2,i,m1 +Dα,m2,m1,i) δα,j ] ηm1ξm2 . (5.28c)

Eq. (5.26) can be solved through the following Langevin equation [98] in
positive-P representation [70, 72],

dξi =
∑
j

Γ
(2)
ij ξjdt+

√
2dwi (t) , (5.29a)

dηi =
∑
j

Γ
(2)
i∗j∗ηjdt+

√
2dw̄i (t) , (5.29b)

where dw (t) and dw̄ (t) are stochastic processes satisfying,〈
dwi (t) dwj

(
t′
)〉

= D
(2)
ij δtt′dt, (5.30a)〈

dwi (t) dw̄j

(
t′
)〉

= D
(2)
ij∗ δtt′dt, (5.30b)〈

dw̄i (t) dwj

(
t′
)〉

= D
(2)
i∗j δtt′dt, (5.30c)〈

dw̄i (t) dw̄j

(
t′
)〉

= D
(2)
i∗j∗δtt′dt. (5.30d)

We can define a 2N -dimensional symmetric matrix D,

D =


(
D

(2)
ij

)
N×N

(
D

(2)
ij∗

)
N×N(

D
(2)
i∗j

)
N×N

(
D

(2)
i∗j∗

)
N×N

 . (5.31)

Then these random variables can be simplified further and organized as a
linear transformations of 2N independent Wiener noises d~ω [70],

d~w = Bd~ω, (5.32)

where

D = BBT . (5.33)

This requires a diagonalization of the 2N×2N matrix D at every time step,
which is the most time consuming part. However, it is still much simpler
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Figure 5.2: The numerical simulation of the generalized Fokker-Planck equa-
tion approach is compared against the BBGKY-like numerical solution of the
Redfield equation, for interacting systems. The calculated current Jre,Nu is
very close to Jre,B while dre,Nu

B in the main panel is relatively large. Other
parameters are set to be λ = 0.5, U = 0.1, T = 2.0, µ = −2.0.

than solving directly the d2-dimension linear system for the central system
with a d-dimensional Hilbert space, since d increases exponentially with N .

We have seen in Fig.5.1 that the numerical simulation leads to accu-
rate results for non-interacting systems, where analytical solutions are pos-
sible. Next, we compare this numerical simulation against the BBGKY-like
method for interacting systems, in Fig.5.2. The currents Jre,Nu and Jre,B

are in agreement with each other up to high temperature biases. However,
dre,Nu
B — the difference between the two Green’s functions – is relatively

large. This indicates that a reasonable result can be obtained using this
numerical simulation, but there is space its improvement.

In the numerical simulation of the generalized Fokker-Planck equations
we used the Euler method for the Itō form of the stochastic differential
equation. The Euler method is not always stable, especially for large U .
In fact, more stable and efficient methods such as the semi-implicit method
for the Stratonovich form have been developed to solve Fokker-Planck equa-
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5.6. Solving the LOLE via the GFPE method

tions [105]. Using such methods might improve stability and accuracy of
the results. However, currently there is an additional technical difficulty
in implementing such methods for the Redfield equation: matrices B are
found numerically so it is hard to derive the corresponding Stratonovich
form. The relatively large dre,Nu

B could also be dure to the truncation of
the true generalized Fokker-Planck equation to the standard Fokker-Planck
equation. This calls for new methods to solve the generalized Fokker-Planck
equation.

5.6 Solving the local-operator Lindblad equation
via the generalized Fokker-Planck equation
method

Instead of the Redfield equation, some authors prefer to use the local-
operator Lindblad equation in the study of transport [58, 59, 99]. In this
section, we demonstrate how to find NESSs from the local-operator Lindblad
equation using the coherent-state representation. The Redfield equation
finds that the operators m̂α for the sites coupled to baths typically involve
more than just the operator at the coupling sites. The local-operator Lind-
blad equation, on the other hand, chooses m̂α ∝ 〈1 + n (ωk,α)〉aα, which
results in the much simpler form of the coupling to baths:

∂ρ(t)

∂t
= −i[HS , ρ(t)]

−λ2π
{
〈1 + n (ε1, TL, µL)〉

[
a†1, a1ρ(t)

]
+ 〈n (ε1, TL, µL)〉

[
a1, a

†
1ρ(t)

]
+ h.c.

+〈1 + n (εN , TR, µR)〉
[
a†N , aNρ(t)

]
+ 〈n (εN , TR, µR)〉

[
aN , a

†
Nρ(t)

]
+ h.c.

}
.

(5.34)

In the case of this specific two-site systems, we have chosen that N = 2 and
ε1,2 = 0. Note that we get Eq. (5.34) from the Redfield equation Eq. (5.2)
by letting

Dα;m = πδαm [1 + n (εα, Tα, µα)] ,

D̄α;m = πδαmn (εα, Tα, µα) ,

Dα;m1m2m3 = 0. (5.35)

These relations greatly simplify the resulting generalized Fokker-Planck
equation. Following the same procedure as for the Redfield equation, we
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derive a similar Langevin equation for Eq. (5.34),

dξn =

[
−i (ξn−1 + ξn+1)− iUξ2nηn − λ2π

∑
α

(δαnξα)

]
dt+B

(n)
1ν dw

(n)
ν ,

(5.36a)

dηn =

[
i (ηn−1 + ηn+1) + iUξnη

2
n − λ2π

∑
α

(δαnηα)

]
dt+B

(n)
2ν dw

(n)
ν ,

(5.36b)

where the matrix B(n) =
(
B

(n)
µν

)
2×2

satisfies,

B(n)
(
B(n)

)T
=

[
−iUξ2n 2λ2π

∑
α n (εα, Tα, µα) δnα

2λ2π
∑

α n (εα, Tα, µα) δnα iUη2n

]
,

(5.37)

and
{
dw

(n)
ν

}
is a set of 2N independent Wiener noises. Note that similar

equations have been used to describe pure isolated dynamics [75] or T = 0
systems driven by the local-operator Lindblad equation [73], for interact-
ing bosonic systems. The 2N -dimensional matrices B are decoupled into N
2-dimensional matrices B(n), which can be diagonalized analytically. There-
fore, it is technically easier to solve the local-operator Lindblad equation
than the Redfield equation and the Stratonovich form is readily supplied
into the xmds software [105]. Results from this local-operator Lindblad
equation have been plotted in Fig.5.3. For non-interacting systems, ana-
lytical expressions can be derived, and one finds that the NESSs from the
local-operator Lindblad equation follows the general Gaussian distribution
in Eq. (5.15) and that the correlation matrix σlole becomes,

σlole =
n (0, TL, µL) + n (0, TR, µR)

4

[
1 0
0 1

]
+
λ2π [n (0, TL, µL)− n (0, TR, µR)]

4 (λ4π2 + 1)

[
λ2π i
−i −λ2π

]
. (5.38)

In Fig.5.3, we have compared these analytical and numerical results
against the BBGKY results. Results for both currents and Green’s func-
tions are found to be consistent for the two approaches. This confirms that
our generalized Fokker-Planck equation method works for both the Redfield
equation and the local-operator Lindblad equation.
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Figure 5.3: Results from the generalized Fokker-Planck equation approach
are compared against the BBGKY solution of the local-operator Lindblad
equation for non-interacting(a) and interacting systems(b). Results for both
calculated currents and the Green’s functions are consistent.

5.7 Conclusions

To summarize, in this section we map the Redfield equation into a gener-
alized Fokker-Planck equation, using the coherent-state representation. For
non-interacting systems, the resulting generalized Fokker-Planck equation
can be solved analytically and an expression of non-equilibrium stationary
states is obtained. This avoids working with the quantum master equation
in a space with an exponentially growing (fermions and spins) or infinite
(bosons) dimension. For interacting systems, firstly this approach is found
to be consistent with the BBGKY-like method. Secondly, a preliminary
classical simulation via the Langevin equation with 2N continuous complex
numbers is discussed. It is found to work well for weakly interacting sys-
tems, although more work is needed. The advantage of this method, if it can
be made to be accurate at stronger interactions, is that the total number of
variables (2N) grows linearly with the system size.

The same method is applied to solve the local-operator Lindblad equa-
tion. Here the method is even more efficient, since at every time step
one needs to solve N 2-dimensional eigenvalue problems instead of a 2N -
dimensional one, like for the Redfield equation. Results are found to be
consistent with those from the BBGKY-like method.

Further development of the techniques for solving the generalized Fokker-
Planck equation is required to make full use of the potential of this approach
based on the coherent-state representation.
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Chapter 6

Application: heat transport
in spin chains

6.1 Introduction

The physical question addressed in this chapter is the validity of the phe-
nomenological Fourier’s law of thermal transport. A system which obeys
(disobeys) Fourier’s law is said to have normal (anomalous) transport, so this
question is equivalent with identifying the conditions for normal transport.
Even for classical systems this issue is not completely settled (see Ref. [76]
for a review), although it was found that normal transport is closely related
to the onset of chaos. For quantum systems a similar relation has also been
proposed [106], where the quantum chaos is characterized by features of level
spacing statistics [37, 107–113].

A widely believed conjecture is that anomalous heat transport occurs in
systems described by integrable Hamiltonians (see Ref. [34] for a review). In
this context, integrability is usually taken to mean the existence of a Bethe
ansatz solution [114]. The validity of this conjecture is still not clear for heat
transport in quantum spin chains, despite considerable effort [19, 35, 36, 42–
44, 56, 59, 60, 82, 83, 106, 115]. Most of this work [35, 42–44, 60, 82, 115]
studied infinite and/or periodic chains, and used the standard Kubo for-
mula [6, 40] where finite/zero Drude weight signals anomalous/normal trans-
port. For integrable systems, the standard Kubo formula always predicts
anomalous heat transport. In fact, full integrability is not even necessary,
all that is needed is commutation of the heat current operator with the
total Hamiltonian [115]. However, in Chapter 3, we have shown that the
validity of the standard Kubo formula is questionable in the study of ther-
mal transport, and that one needs to consider explicitly a system connected
to baths. We note that the “integrability” of the chain connected to baths
may be lost even if the isolated chain is integrable, since the terms describing
the coupling to the baths lead to a non-vanishing commutator between the
heat current operator and the total Hamiltonian [116–118]. Both these facts

97



6.1. Introduction

might invalidate the main argument for anomalous transport of integrable
systems, based on the standard Kubo formula. For simplicity of terminol-
ogy, here we call a system integrable if it is so when isolated, since the term
is used in this sense in the above conjecture.

Studies which explicitly consider the effects of the baths, while fewer,
also give contradictory results. Using the local-operator Lindblad equation,
Prosen et al. showed that an integrable gaped (Jz > Jxy) XXZ chain has
normal spin conductivity while its energy transport is anomalous [59, 119],
while using the same approach, Michel et al. claimed that when Jz > 1.6Jxy,
spin chains have normal energy transport [56]. Particularly, a recent work
in Ref. [119] shows that results from the local-operator Lindblad equation
and from the standard Kubo formula are consistent. Such conflicting results
exist not only in theoretical studies, but also in experiments. Anomalous
heat transport observed experimentally in systems described by integrable
models, such as (Sr,Ca)14Cu24O41, Sr2CuO3 and CuGeO3, [79, 120, 121]
seems to validate this conjecture, but Ref. [81] finds normal transport in
Sr2CuO3 at high temperatures.

Even if there was no conflict between results based on the local-operator
Lindblad equation [56, 59], as discussed in Chapter 2 this approach is less
reliable than the Redfield equation. For example, only the latter leads to
the proper Boltzmann distribution if the baths are not biased. This is why
here we investigate heat transport in finite spin chains coupled to ther-
mal baths, using the Redfield equation. There are already several other
such studies [36, 83]. However, these are for spin systems that are either
non-interacting (thus trivially integrable), or are non-integrable. (We call
a spin chain “non-interacting” if it can be mapped, for example through a
Jordan-Wigner transformation, to a Hamiltonian for non-interacting spinless
fermions). Anomalous transport is found for the former and normal trans-
port is found for the latter. Disordered spin systems have also been found
to have normal transport [37]. There are no examples of clean, interacting
but integrable systems investigated via the Redfield equation.

We study such systems here. We find no direct relation between inte-
grability and anomalous transport. Instead, based on our systematic inves-
tigations, we propose a new conjecture: anomalous conductivity is observed
in systems that can be mapped to non-interacting fermions. Those that
map to interacting fermion models, whether integrable or not, show normal
transport. This is in qualitative agreement with the demonstration by Sirker
et al. that diffusion is universally present in interacting 1D systems [42].

It is important to note that, chronologically, this was the first project
undertaken once the formalism of the Redfield equation was adopted. This
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6.2. The model and its Redfield equation

explains why the results shown below are derived using (inefficient) direct
methods to solve the Redfield equation, and therefore are restricted to rather
small systems. This is also why our conjecture needs to be further examined,
for larger systems. It was this computational inefficiency that drove the
subsequent research on more efficient methods, presented in the previous
chapters. In future, we plan to use these efficient methods to extend this
study to larger systems.

The chapter is organized as follows. Section 6.2 defines the system and
its Redfield equation. In Sections 6.3 we discuss the numerical methods and
in Section 6.4 we define the thermal current and local temperatures. We
then proceed to present numerical results in Section 6.5, and then conclude.

6.2 The model and its Redfield equation

We consider an N -site chain of spins-12 described by the Hamiltonian:

HS =

N−1∑
i=1

[
Jxs

x
i s

x
i+1 + Jys

y
i s

y
i+1 + Jzs

z
i s

z
i+1

]
− ~B ·

N∑
i=1

~si (6.1)

while the heat baths are collections of bosonic modes:

HB =
∑
k,α

ωk,αb
†
k,αbk,α (6.2)

where α = R/L indexes the right/left-side baths. The system-baths coupling
is taken as:

V = λ
∑
k,α

V
(α)
k syα ⊗

(
b†k,α + bk,α

)
(6.3)

where syL = sy1 and s
y
R = syN , i.e. the left (right) thermal bath is only coupled

to the first (last) spin and can induce its spin-flipping. This is because we
choose ~B · ~ey = 0 while | ~B| is finite, meaning that spins primarily lie in the
x0z plane so that sy acts as a spin-flip operator.

From Eq. (2.29), the resulting Redfield equation for ρ (t) is:

∂ρ(t)

∂t
= −i[HS , ρ(t)]− λ2

∑
α=L,R

([syα, m̂αρ(t)] + h.c.) (6.4)

where m̂α = syα · Σα. Here, (·) refers to the element-wise product of two
matrices, 〈n|a · b|m〉 = 〈n|a|m〉〈n|b|m〉. The bath matrices ΣL,R are defined
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in terms of the eigenstates of the system’s Hamiltonian HS |n〉 = En|n〉 as:

Σα = π
∑
m,n

|m〉〈n|
[
Θ(Ωmn)nα (Ωmn)Dα (Ωmn) |V (α)

kmn
|2

+Θ(Ωnm) (1 + nα (Ωnm))Dα (Ωnm) |V (α)
knm

|2
]

where Ωmn = Em−En = −Ωnm and kmn is defined by ωkmn,α = Ωmn, i.e. a
bath mode resonant with this transition. Furthermore, Θ(x) is the Heaviside

function, nα(Ω) =
[
eβαΩ − 1

]−1
is the Bose-Einstein equilibrium distribu-

tion for the bosonic modes of energy Ω at the bath temperature Tα = 1/βα,

and Dα(Ω) is the bath’s density of states. The product Dα (Ωmn) |V (α)
kmn

|2
is the bath’s spectral density function. For simplicity, we take it to be a
constant independent of α, m and n.

6.3 Numerical methods

It is straightforward to use the Runge-Kutta method to integrate the Red-
field equation, Eq. (6.4), starting from some initial states. The memory cost
is proportional to 22N for an N -spin chain, but it takes a very long time for
the integration to converge to the stationary state. This is not surprising
since, in principle, the stationary state is reached only as t→ ∞.

As already discussed, another approach [58] is to solve directly for the
stationary state from:

Lρ(∞) = 0, (6.5)

i.e. to find the eigenstate for the zero eigenvalue of the 2N -dimensional
matrix L. However, in this case, the memory cost is proportional to 42N ,
which is much worse than for the Runge-Kutta method.

The method which has better memory efficiency than this eigenvalue
problem and also better time efficiency than the Runge-Kutta method, is
to convert the equation into a linear system and solve it via matrix-free
methods like the Krylov space methods, which requires only matrix-vector
multiplication but not explicitly the matrix. The eigenvalue problem can be
rewritten as a linear system of equations after explicitly using the normal-
ization condition tr (ρ) = 1 such that

L̄ρ(∞) = ν, (6.6)

where ν = [1, 0, · · · ]T and L̄ is found from L by replacing the first row by
tr(ρ). Then we use for example the generalized minimal residual method
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(GMRES) [122], which requires only the matrix-vector multiplication rule.
This new way of solving the Redfield equation has memory cost of ∼ 22N

and time efficiency of a linear system with dimension 22N . It is still a di-
rect method so its efficiency is not comparable with methods such as the
BBGKY-like approach and the coherent-state representation method that
we discussed previously, however, unlike them it gives an exact result. This
is important until one can understand whether the further approximations
made in the more efficient methods can, for example, destroy the integra-
bility of the system. Also, because the commutation relations between spin
operators are quite different from those of fermions and bosons, the more
efficient methods are not readily generalizable. Developing and applying
them to this problem will be the topic of future work.

6.4 Definitions of the thermal current and local
temperatures

We rewrite HS =
∑N−1

i=1 hi,i+1 +
∑N

i=1 hi, where hi,i+1 is the exchange be-
tween nearest-neighbor spins and hi is the on-site coupling to the magnetic
field. We can then define a local site Hamiltonian

h
(S)
i =

1

2
hi−1,i + hi +

1

2
hi,i+1 (6.7)

with h0,1 = hN,N+1 = 0, and a local bond Hamiltonian

h
(B)
i =

1

2
hi + hi,i+1 +

1

2
hi+1 (6.8)

such that

HS =
N∑
i=1

h
(S)
i =

N−1∑
i=1

h
(B)
i . (6.9)

The local bond Hamiltonians can be used to derive the heat current operator
from the continuity equation

ĵi→i+1 − ĵi−1→i = ∇ĵ = −
∂h

(B)
i

∂t
= −i

[
HS , h

(B)
i

]
. (6.10)

This results in

ĵi→i+1 = i
[
h
(B)
i , h

(B)
i+1

]
(6.11)
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for i = 1, · · · , N − 2. As expected, in the steady state we find 〈ĵi→i+1〉 =

tr
(
ĵi→i+1ρ (∞)

)
= J to be independent of i. Similarly, we define the spin

polarization 〈szi 〉 and the spin current for XXZ model,

Js = Jxy
〈
syi s

x
i+1 − sxi s

y
i+1

〉
. (6.12)

Knowledge of the steady state heat current J , as such, is not enough
to decide whether the transport is normal or not. Consider an analogy
with charge transport in a metal connected to two biased leads. What
shows whether the transport is anomalous or not is the profile of the electric
potential, not the value of the electric current. In anomalous transport (for
clean, non-interacting metals) all the voltage drop occurs at the ends of the
sample, near the contacts. Away from these contact regions, electrons move
ballistically and the electric potential is constant, implying zero intrinsic
resistance. For a dirty metal, scattering takes place everywhere inside the
sample and the electric potential decreases monotonically in between the
contact regions, i.e. the sample has finite intrinsic resistivity.

In principle, the scaling of the current with the sample size, for a fixed
effective bias, also reveals the type of transport: for anomalous transport,
the current is independent of the sample size once its length exceeds the
sum of the two contact regions, while for normal transport it decreases like
inverse length. The problem with this approach is that one needs to keep
constant the effective bias, i.e. the difference between the applied bias and
that in the contact regions. Furthermore, since we can only study relatively
short chains, the results of such scaling may be questionable.

It is therefore desirable to use the equivalent of the electric potential
for heat transport and to calculate its profile along the chain, in order to
determine the type of transport. This, of course, is the “local temperature”,
which is a difficult quantity to define properly. One consistency condition
for any definition is that if TL = TR = T , i.e. the system is in thermal
equilibrium at T , then all local temperatures should equal T . We define
local site temperatures Ti which fulfill this condition in the following way.
Since we know all eigenstates of HS , it is straightforward to calculate its
equilibrium density matrix at a given T , ρeq (T ) =

1
Z

∑
n e

−βEn |n〉〈n|, where
Z =

∑
n e

−βEn . Let then 〈h(S)i 〉eq (T ) = tr[ρeq (T )h
(S)
i ]. We define Ti to be

the solution of the equation:

〈h(S)i 〉eq (Ti) = tr[ρ (∞)h
(S)
i ]. (6.13)

In other words, the steady-state value of the energy at that site equals the
energy the site would have if the whole system was in equilibrium at Ti.
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Of course, we can also use other “local” operators such as h
(B)
i to calculate

a local bond temperature Ti+ 1
2
. We find that when these definitions are

meaningful, the results are in very good agreement no matter what “local”
operator is used.

This type of definition of Ti is meaningful only if a large magnetic field B

is applied. For small B, the expectation values 〈h(S)i 〉eq (T ) are very weakly
T -dependent, so that tiny numerical errors in the steady-state value can
lead to huge variations in Ti. Addition of a large B is needed to obtain

〈h(S)i 〉eq (T ) which varies fast enough with T for values of interest, so that
a meaningful Ti can be extracted. Since we could not find a meaningful

definition for Ti when
∣∣∣ ~B∣∣∣ → 0, we cannot investigate such cases. Note,

however, that most integrable models remain integrable under addition of
an external field ~B = Bêz.

6.5 Results

In all our calculations, we take Bz = 1 and the exchange J ∼ 0.1. Temper-
atures TL/R = T (1 ± δ/2) should not be so large that the steady state is
insensitive to the model, or so small that only the ground-state is activated.
Reasonable choices lie between min(Jx, Jy, Jz) and NB, which are roughly
the smallest, respectively the largest energy scales for the N -site spin chain.

In Fig. 6.1 we show typical results for (a) local temperature profiles
Ti, Ti+ 1

2
and (b) local spin polarization profiles Sz

i . We apply a large bias δ =

(TL − TR)/T = 0.4 for clarity, but we find similar results for smaller δ. For
these values, it seems that the “contact regions” include only the end spins.
The profile of the central part of the chain is consistent with anomalous
transport (flat profile) for the XX chain (Jx = Jy, Jz = 0) and shows
normal transport (roughly linear profile) in all the other cases. XY chains
with Jx 6= Jy behave similarly with the XX chain. We find similar results
for ferromagnetic couplings. We also find that the ratio between the effective
temperature difference, T2 − TN−1, and the applied temperature difference
TL − TR, is not a constant for different system sizes N . Therefore, in our
numerical calculation, it is not possible to keep the effective temperature
difference as a constant by applying the same temperature difference on the
ends while changing the system size N . This implies that the dependence of
J v.s. N can not be used as an indicator of normal or anomalous transport.
At most, it can provide a very rough qualitative picture. We have plotted
several of the J vs. N in Fig.6.2. We see that J is independent of N for XX
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Figure 6.1: Plot of (a) local temperature profile and (b) local spin polariza-
tion profile for chains with N = 10. In all cases TL = 2.4, TR = 1.6, λ =
0.1, Jx = 0.1, Bz = 1.0. Other parameters are Jy = 0.1, Jz = 0.0(XX);
Jy = 0.1, Jz = 0.05 (XXZ0.05); Jy = Jz = 0.1 (XXX); Jy = 0.1, Jz = 0.2
(XXZ0.2) and Jy = 0.2, Jz = 0.3 (XYZ). Only the XX chain shows flat Ti
and Sz

i profiles. All other models have almost linearly decreasing profiles of
both temperature and Sz.
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Figure 6.2: Heat currents are plotted as a function of system size for three
models: XX, XY Z and XXX. J is independent of N for XX chains, and
it decreases with N for the other two cases. Due to the uncertainty about
the effective applied temperature difference, the fitting curves should only
be regarded as a guide for eyes. The same parameters as those in Fig.6.1
are used.

chains while it decreases with increasing N for XY Z and XXX chains.
Another way to examine size-dependence is to compare the temperature

and Sz profiles for all available sizes. We normalize all the profiles for
various models with different sizes by harvesting only the data in the central
regions and converting them into dimensionless values in [0, 1], for example,

from (i, Ti) to ( i−2
N−3 ,

Ti−TN−1

T2−TN−1
), i = 2, 3, . . . , N − 1. In Fig.6.3, we plot such

normalized temperature and Sz profiles. We see that curves for all values
of N collapse onto one single straight line and furthermore, there is no
difference between XY Z and XXX chains. Currently we can only study
small systems, but from these normalized profiles, no qualitative difference
has been found for different sizes.

All these are integrable models. The XX model is special because it can
be mapped to non-interacting spinless fermions with the Jordan-Wigner
transformation [84]. A finite Jz leads to nearest-neighbor interactions be-
tween fermions. Eigenmodes for models with Jz 6= 0 can be found using
Bethe’s ansatz, but they cannot be mapped to non-interacting fermions.

In order to investigate where this transition between anomalous and
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Figure 6.3: Normalized temperature and Sz profiles are plotted. Curves
for different values of N collapse onto a single straight line and we see no
difference between XY Z and XXX chains.

normal transport occurs, we plot temperature profiles for systems with small
Jz in Fig.6.4(a).

We see that even for very small Jz the above observation still holds. For
Jz = 0.01 there is a slight qualitative difference, namely that the contact re-
gions seem larger than just the end spins, as can be seen from the normalized
profiles. We think this may be due merely to limitations of the numerical
accuracy. In Fig.6.4(b), we investigate what is the minimum value of Bz

that we can use with confidence. As we pointed out before, our definition
of local temperature and also the idea of local a spin polarization Sz

i are
only meaningful for sufficiently large Bz. We find that roughly this implies
Bz > 0.3. This is reasonable, since for this limiting value the energy scale
due to coupling to the local Bz field (0.3/2) is comparable with the energy
related to exchange (3× 0.1/4).

We found this generic behavior for a wide range of parameters. When
λ ∈ [0.03, 0.2], T ∈ [0.3, 30.0] and δ ≥ 0.01, the spin chain has normal
conductivity when Jz ∈ [0.02, 0.5] and anomalous conductivity when Jz = 0.
These results lead us to conjecture that it is the presence or absence of
interactions, rather than integrability, that determines whether or not the
heat transport is normal. We find no difference between thermal transport
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Figure 6.4: (a) Temperature profiles for small Jz values are plotted. Here
Jx = Jy = 0.1, Bz = 1.0. The effective temperature drop becomes smaller for
smaller Jz, but the slope is still finite if Jz ≥ 0.02. The inset plots normalized
profiles, and shows no obvious differences for models with Jz ≥ 0.02. The
case of Jz = 0.01 shows a finite slope but the normalized profile indicates
a slight difference: the contact regions seem to be more extended than in
the other cases. (b) Temperature profiles of XXX chains with J = 0.1 and
small values of Bz. A linear temperature drop is observed for Bz = 0.3, but
a flat profile for Bz = 0.1. Other parameters are the same as in Fig.6.1.
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and spin transport, unlike the results of Prosen et al. [59], based on the
local-operator Lindblad equation.

The conjecture may be tested further on various systems. One candidate
is the Ising model in a transverse fieldBx. It maps to non-interacting spinless
fermions [123] and if we add a Bz field, it becomes interacting. Another
closely related model is a system of spinless fermions on a tight-binding
chain, with the nearest-neighbor interaction:

HS = ε

N∑
l=1

c†l cl − t

N−1∑
l=1

(
c†l cl+1 + c†l+1cl

)
+ V0

N−1∑
l=1

c†l+1cl+1c
†
l cl, (6.14)

HB =
∑

k,α=L,R

ωk,αb
†
k,αbk,α, (6.15)

VSB = λ
∑
k,α

(
c†αbk,α + cαb

†
k,α

)
. (6.16)

The XXZ chains map exactly into this HS model, after using the Jordan-
Wigner transformation. However, the coupling to the baths in this fermionic
system is different from that in the spin systems. For a spin system, the
Jordan-Wigner transformation maps the σy operator into an operator much
more complicated than the c† or c used in this fermionic model. Therefore,
although the two models are closely related, they are not identical. Results
on this model can be interpreted as another test of our conjecture or at least
a check of whether the observations reported above are influenced by the
specific model for the system-bath coupling.

In Fig.6.5, we plot local temperature profiles along the Ising spin chains
in panel (a) and for fermionic chains in panel (b). The results support
our conjecture: interactions lead to normal transport. Note that ε is set
to be much larger than t, to mirror the condition Bz � J . When ε is
comparable to t, both non-interacting and interacting systems show almost
flat temperature profiles.

In summary, the first conclusion we draw from these results is that in-
tegrability is not sufficient to guarantee anomalous transport: several inte-
grable models show normal heat transport, in agreement with other studies
[42, 58, 59]. The second conclusion is that only models that map onto Hamil-
tonians of non-interacting fermions exhibit anomalous heat transport. This
is a reasonable sufficient condition, since once inside the sample (past the
contact regions) such fermions propagate ballistically. However, we cannot,
at this stage, demonstrate that this is a necessary condition as well. We
therefore can only conjecture that this is the criterion determining whether
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Figure 6.5: Temperature profiles of (a) Ising spin chains and (b) the V -t
model of fermionic chains. The Ising spin chains have anomalous transport
when Bz = 0 (Isingx, circles) and normal transport when Bz = 1.0 (Isingxz,
squares). The fermionic chains show a flat temperature profile when V0 = 0
(circles) but a linear temperature drop when V0 = 0.2 (squares). Other
parameters are Jz = 0.1, Bx = 1.0, ε = 1.0, t = 0.1, TL = 2.4, TR = 1.6, µ =
−1.0, λ = 0.1, N = 10.
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the heat transport is anomalous. If we believe that our results are not ar-
tifacts due to mainly the boundary effects of the limited system sizes, then
this conjecture is the only consistent qualitative conclusion that we may
draw from all above results.

In this context, it is important to emphasize again the essential role
played by the connection to the baths. In its absence, an isolated integrable
model is described by Bethe ansatz type wavefunctions. Diffusion is impos-
sible since the conservation of momentum and energy guarantees that, upon
scattering, pairs of fermions either keep or interchange their momenta. For
a system connected to baths, however, fermions are continuously exchanged
with the baths, and the survival of a Bethe ansatz type of wavefunction
becomes impossible. In fact, even the total momentum is no longer a good
quantum number. We believe that this explains why normal transport in
systems mapping to interacting fermions is plausible.

Normal transport is also possible for non-interacting fermions, if they are
subject to elastic scattering on disorder. This can be realized, for example,
by adding to the XY model a random field Bz at various sites. In that case,
as expected, normal conductance has been found in disordered systems [37].

On the other hand, anomalous transport can also occur in models which
map to homogeneous interacting fermions if the bath temperatures are very
low. Specifically, consider the XXZ models. Because of the large Bz we use,
the ground-state of the isolated chain is ferromagnetic with all spins up. The
first manifold of low-energy eigenstates have one spin flipped (single magnon
states), followed by states with two spins flipped (two magnon states), etc.
The separation between these manifolds is roughly Bz, although because of
the exchange terms each manifold has a fairly considerable spread in energies
and usually overlaps partially with other manifolds.

If both TL, TR � Bz, only single-magnon states participate in the trans-
port. We can then study numerically very long chains by assuming that the
steady-state matrix elements ρnm vanish for all other eigenstates (Sz,tot is
a good quantum number for these models). In this case we find anomalous
transport for all models, whether integrable or not. This is reasonable, since
the lone magnon (fermion) injected on the chain has nothing else to interact
with, so it must propagate ballistically.

We can repeat this restricted calculation by including the two-magnon,
three-magnon, etc. manifolds in the computation. As expected, the results
agree at low TL, TR, but differences appear for higher TL, TR, when these
higher-energy manifolds become thermally activated. In such cases, the
transport becomes normal for the models mapping to interacting fermions
as soon as the probability to be in the two (or more) magnon sector be-
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comes finite. In other words, as soon as multiple excitations (fermions) are
simultaneously on the chain, and inelastic scattering between them becomes
possible. These results may explain the heat transport observed experi-
mentally in compounds such as Sr2CuO3 [81], where at low temperature
anomalous transport was found while at high temperature normal transport
was reported.

6.6 Conclusions

Based on an extensive study of quantum spin chains using the Redfield equa-
tion, we propose a new conjecture for what determines the appearance of
anomalous heat transport at all temperatures in spin chains. Unlike pre-
vious suggestions linking it to the integrability of the Hamiltonian or the
existence of energy gaps, we propose that, for clean systems, the criterion is
the mapping of the Hamiltonian onto a model of non-interacting fermions.
Our results showing normal energy and spin transport in systems with fi-
nite Jz contradict the major conclusions of Ref. [56] and Ref. [59], which,
however, are based on the less trustworthy local-operator Lindblad equation.

This conjecture should be checked for larger systems, where more reliable
information on the relation between J and N can be extracted. The more
efficient methods presented in the previous two chapters might allow us to
undertake such a study. For discussion of the thermal conductance, which
is related to higher order Green’s functions — G2 and G3, not only G1 —
extension of the methods to higher orders may be needed.
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Chapter 7

Conclusions and discussions

We began this project with a study of the thermal transport of spin chains
in the framework of theories of open quantum systems. At that time, simi-
lar questions had been investigated using either the standard Kubo formula,
the non-equilibrium Green’s functions method or the local-operator Lind-
blad equation. However, the idea of using the Redfield equation for these
questions had just been proposed and it had been applied only to non-
interacting systems or very small interacting but non-integrable systems.
We first developed and applied the direct methods to the Redfield equation
for spin systems. From the preliminary results for short chains we found a
new conjecture, linking anomalous transport to existence of mapping onto
non-interacting fermions. This is the main result of Chapter 6.

It then became necessary to study larger interacting systems to either
confirm or reject this observation. However, at the time there were no avail-
able methods capable of solving the Redfield equation for large interacting
systems. Thus, we turned to investigate such methods. We first tried to
make direct use of the standard Kubo formula. However, we found that
the standard Kubo formula is not applicable to open systems explicitly cou-
pled to baths and instead we had to derive a similar Kubo formula from
the Redfield equation using linear response theory. We call the result the
open Kubo formula. This is the content of Chapter 3. Several forms of such
OKFs were proposed and tested. The proper approach was shown to not
suffer from singularities, like the the standard Kubo formula, however it is
not very efficient. A more efficient OKF was also identified, however only
for certain types of quantities. Neither approach is efficient enough to allow
the study of systems of the same size as permitted by the non-equilibrium
Green’s functions method.

Next, inspired by the non-equilibrium Green’s function method[13–15]
and also by Saito’s work on non-interacting systems[36], we focused on
Green’s functions instead of the reduced density matrices and developed
the BBGKY-like hierarchical method presented in Chapter 4. Further ap-
proximations are needed to truncate this hierarchy, if there are interactions.
We identified two possible approaches. The first replaces, at a certain level of
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the hierarchy, all higher-order Green’s functions by their equilibrium values.
This method is computationally less efficient but accurate up to large values
of the interaction. The second method uses a cluster expansion, basically
factorizing the higher-order Green’s functions in terms of lower-order ones.
This approach is applicable to much larger systems. While the simplest
version (truncation at first level of the hierarchy) is accurate only for rather
small interactions, we showed that systematic increase of the truncation
level leads to both a systematic improvement of its accuracy, and a larger
range of interactions where this holds. Also, truncation at second level gen-
erates correlated two-particle Green’s functions, beyond the Hartree-Fock
approximation.

In Chapter 5 we proposed another method: solving the Redfield equation
in the coherent-state representation. The resulting differential equation has
the form of the generalized Fokker-Planck equation, so we call this method
the generalized Fokker-Planck equation method. Similar methods have been
applied to pure dynamical evolution or equilibrium states, where studies of
large interacting systems with roughly 105000000-dimensional Hilbert spaces
have been performed[72–74]. We extend the method to apply it to the Red-
field equation and study also non-equilibrium stationary states. We have
confirmed that for non-interacting systems exact results can be found ana-
lytically with this new approach, even for non-equilibrium stationary states.
Other advantages are that, from a numerical point of view, in this approach
interacting systems are handled similarly like non-interacting systems. Also,
Green’s functions of all orders can be calculated all at once. The challenge,
still not fully settled, is to find efficient and stable ways to solve these dif-
ferential equations. We showed some preliminary results, based on classical
simulations, that are promising yet require more work.

The next step will naturally be to apply these methods to the studies
of transport properties of various systems, this time for large systems. The
question of validity of Fourier’s Law is not yet answered definitely. The
second-order form of the BBGKY-like method seems to have a good poten-
tial there. However, the study of spin systems requires different kinds of
BBGKY-like equations, and also to understand whether the cluster approx-
imation interferes with the integrability of a model. Therefore, although
the methods we proposed are in principle applicable to this problem, spe-
cific forms of hierarchical equations need to be re-derived. Future possible
projects, thus, are to develop the BBGKY-like method for spin systems, or to
use the current BBGKY-like method to discuss thermal transport of bosonic
or fermionic systems, instead of spin systems. Alternatively, we can also use
the generalized Fokker-Planck equation method. Currently the simulation
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Figure 7.1: (a) A sketch of exactly solvable decoherence model: a single
spin (~σc) is coupled to a bath of N spins {~σi}. (b) A variation of (a) in that
the central system is coupled to the baths only via the ends.

is not stable enough and it works only for bosonic systems. Improving this,
and also developing similar methods for fermionic systems could be another
future project.

There are also many small systems showing rich physics, such as sys-
tems of a few coupled quantum dots or molecular devices coupled to reser-
voirs. Application of the proposed methods to such systems should be very
straightforward.

The methods can also be applied to more general physical systems, not
only to study transport but also other physical questions, such as deco-
herence control and classical simulations of quantum computations. In all
models studied in this thesis, the baths are assumed to be collections of
eigenmodes |ων (k)〉, connected to the central systems via λV ν

k (see for ex-
ample Eq. (2.44)). We then assume V ν

k to have certain properties. A more
realistic and specific setup is to connect the baths locally to the central
system, as sketched in Fig7.1(b). In that case, V ν

k is implicitly defined.
The system sketched in Fig.7.1(a) is in fact a famous exactly solvable

model of quantum decoherence [85, 124]: a single spin-12 is connected to a
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bath of N spins-12 via Ising coupling with strength gi to bath i [125]. The
dynamics of the whole composite system is exactly solvable and Zurek et
al. showed that the off-diagonal elements (in σz basis), thus the coherent
part, die out very quickly. A related but rather ambitious question is to
study a counterpart with a thermal bath and to ask the following questions:
whether or not the reduced density matrix of the central system converges
to the expected thermal equilibrium state; whether or not the off-diagonal
elements disappear and if so, which “diagonal” and “off-diagonal” parts are
relevant, and how that depends on the specific forms of interaction? In
fact, such a natural selection of the basis is called, in theories of quantum
measurement, eiselection of the pointer states [85, 124]. Furthermore, how
do the answers to the above questions depend on various parameters of the
composite systems, such as size of the bath, coupling strength between the
central system and the bath, and temperature of the bath and so on. We
can ask all the questions for a similar setup but now with two baths, biased
or not, connected to the systems locally, as sketched in Fig.7.1(b).

These questions can be investigated using different approaches: starting
from the pure dynamics of the whole composite system, which usually how-
ever is only applicable to non-interacting systems (both the central system
and the baths); through the Redfield equation, which assumes the Markovian
approximation, weak coupling and idealized infinite-size baths; and finally
by the non-equilibrium Green’s function method, which is typically applied
for configurations similar to the variation in Fig.7.1(b). In fact, there is
another approach — the exact master equation or the influence functional
method, which relaxes the assumption of the Markovian approximation and
the weak coupling limit, but still takes the baths to be infinitely large. How-
ever, it currently works only for non-interacting systems since it is hard to
solve such an exact master equation for interacting systems. So let us focus
on the above three methods.

The generalized Fokker-Planck equation method makes it possible to im-
plement the first approach even for large interacting systems. The second
approach can be realized through either the BBGKY-like method or the
generalized Fokker-Planck equation method. Implementations of the third
method are already well developed. Note, however, that if we set the tem-
peratures of the baths to be equal then the non-equilibrium Green’s function
arrives at the corresponding equilibrium state of the whole composite sys-
tem, which does not guarantee that the reduced density matrix of the central
system follows the proper equilibrium distribution. On the other hand, the
reduced density matrix generally converges to an equilibrium distribution
in the theories of open quantum systems approach. Therefore, it will not
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be much of a surprise if the non-equilibrium Green’s function leads to qual-
itatively different results. If we want to compare them, a proper model, on
which the non-equilibrium Green’s function method and the Redfield equa-
tion ideally should produce the same result, is required. Comparison be-
tween the first two might shed some light on differences between the Marko-
vian and the non-Markovian approximation, the validity of the infinite-size
bath assumption, etc. Comparison between the latter two might help us
understand them better or even improve both.

Lastly, our efficient methods for the Redfield equation can be applied as
well to solving the local-operator Lindblad equation. This should make the
local-operator Lindblad equation a more powerful tool in those cases where
it is applicable. As we mentioned earlier, there are still many groups that
use the local-operator Lindblad equation instead of the Redfield equation.
It should be very straightforward to implement the methods for the local-
operator Lindblad equation.
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Appendix A

Perturbational
decomposition of the
operators m̂

In this appendix we will derive expressions of operators m̂ and ˆ̄m in two
ways: using the eigenvectors of HS = H0 + VS and expanding the operators
perturbationally in orders of V0 based on expressions of the operators for
the corresponding non-interaction H0.

A.1 Expanded in eigenbasis of HS

From its definition in Eq(4.3), in the representation of eigenvalues {Em} and
eigenstates {|m〉} of HS , the operator m̂ can be written as

〈m |m̂α|n〉 = (m̂α)mn

= (cα)mn

∑
k

|V α
k |2

∫ ∞

0
dτei(En−Em−ωk,α)τ 〈1− nα (ωk,α)〉

= (cα)mn π

∫
dωDα (ω) |V α (ω) |2〈1− nα (ω)〉δ (Ωmn − ω)

= (cα)mn πD
α (En − Em) |V α (En −Em) |2〈1− nα (En − Em)〉, (A.1)

where we have used
∫∞
0 dτeiωτ = πδ (ω)+iP

(
1
ω

)
and neglected the principal

value part. We have also assumed that it is possible to perform a change
of variable on V α

k such that it becomes V α (knm), where kmn is defined by
ωkmn,α = Ωmn = Em − En = −Ωnm, i.e. a bath mode resonant with this
transition. This limits the possible forms of V α

k and ωk,α. For example, for
each given energy Ωmn, there should be a unique value of V α

knm
. In all the

work in this thesis, we take V α
k as a constant so this condition is satisfied.
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A.2. Perturbational expansion starting from non-interacting systems

Dα(ω) is the bath’s density of states. We arrive at

m̂α = π
∑
m,n

|m〉〈n|〈m|cα|n〉 (1− nα (Ωnm))Dα (Ωnm) |V α
knm

|2, (A.2a)

ˆ̄mα = π
∑
m,n

|m〉〈n|〈m|c†α|n〉nα (Ωmn)Dα (Ωmn) |V α
kmn

|2. (A.2b)

We furthermore set V α
knm

Dα(ω) as a constant and absorb it into λ2. Sim-
ilar expressions can be derived for bosonic systems with the Fermi-Diract
distribution replaced by the Bose-Einstein distribution and (1− nα (Ωnm))
replaced by (1 + nα (Ωnm)). This approach involves a direct diagonalization
of the isolated system HS . One can avoid the diagonalization by finding
such operators m̂ perturbationally.

A.2 Perturbational expansion starting from
non-interacting systems

To present the general idea concretely, let us work on a specific system, the
Hamiltonian HS = H0 + VS defined in Eq. (4.1), which we rewrite here for
convenience,

HS = −t
N−1∑
l=1

(
c†l cl+1 + c†l+1cl

)
+ V0

N−1∑
l=1

c†l+1cl+1c
†
l cl = H0 + VS . (A.3)

Next assuming V0 is small and treating it perturbationally, we want to ex-
press the operator m̂α in terms of polynomials of {cm} operators and in
various orders of V0. When V0 = 0 the system is a tight-binding open chain.
The following basis transformation — discrete Fourier transform for open
chains

ck =
1√
N

N∑
l=1

sin
klπ

N + 1
cl, (A.4)

diagonalizes H0,

H0 =

N∑
k=1

εkc
†
kck, (A.5)

where

εk = −2t cos
πk

N + 1
. (A.6)
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A.2. Perturbational expansion starting from non-interacting systems

Therefore, cα (t) is a linear function of all cm,

cl (t) ≡ c
(0)
l (t) =

2

N + 1

∑
km

sin
πkl

N + 1
sin

πkm

N + 1
e−iεktcm. (A.7)

Hence, m̂α is also a linear combination of all cm operators. One can imagine
that for small V0, m̂L should not be too far from such a linear combination.

Let us call cl (t) when V0 = 0 as c
(0)
l (t). Treating this as the zeroth order

form for the full dynamical cl (t), and expanding

cl (t) =
∑
n

V n
0 c

(n)
l (t) , (A.8)

we derive a perturbation equation of c
(n)
l (t):

ċ
(n)
l = it

(
c
(n)
l−1 + c

(n)
l+1

)
− id

(n−1)
l , (A.9)

where we define, for non-negative integers n, n1, n2, n3,

d
(n)
l =

∑
n1,n2,n3∑

i ni=n

{
c
(n1)
l c

†,(n2)
l−1 c

(n3)
l−1 + c

(n1)
l c

†,(n2)
l+1 c

(n3)
l+1

}
. (A.10)

The solution of the above equation can be written as

c
(n)
l (t) = −i

∫ t

0
dτ

2

N + 1

∑
km

sin
πkl

N + 1
sin

πkm

N + 1
e−iεk(t−τ)d(n−1)

m (τ) .

(A.11)

Here the initial condition c(n) (0) = 0(∀n ≥ 1) is used. As the expression of

c
(0)
l is given in Eq. (A.7), explicitly the expression of c

(1)
l is

c
(1)
l (t) =

(
2

N + 1

)4 ∑
km
kimi

ei(ε(k2)−ε(k1)−ε(k3))t − eiε(k)t

ε (k1) + ε (k3)− ε (k2)− ε (k)

· sin πkl

N + 1
sin

πk1l

N + 1
sin

πkm

N + 1
sin

πk1m1

N + 1
sin

πk2m2

N + 1
sin

πk3m3

N + 1

·
[
sin

πk2 (l − 1)

N + 1
sin

πk3 (l − 1)

N + 1
+ sin

πk2 (l + 1)

N + 1
sin

πk3 (l + 1)

N + 1

]
·cm1c

†
m2
cm3 . (A.12)
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A.2. Perturbational expansion starting from non-interacting systems

Similarly we can derive c
(2)
l , which will be shown explicitly later when we

discuss terms proportional to V 2
0 in bath operators m̂. Plugging this gen-

eral solution into Eq(4.3), and after straightforward but tedious algebra,
we arrive at the decomposition of m̂α and ˆ̄mα in Eq(4.34) with expansion
coefficients defined as follows,

Dα;m = π
2

N + 1

∑
k

sin
πklα
N + 1

sin
πkm

N + 1
[1− n (εk, Tα)] , (A.13a)

D̄α;m = π
2

N + 1

∑
k

sin
πklα
N + 1

sin
πkm

N + 1
n (εk, Tα) , (A.13b)

for the zeroth order expansion,

Dα;m1m2m3 = π

(
2

N + 1

)4 ∑
k,m,k1,k2,k2

·n (ε (k) , Tα)− n (ε (k1) + ε (k3)− ε (k2) , Tα)

ε (k1) + ε (k3)− ε (k2)− ε (k)

· sin kπlα
N + 1

sin
k1πm1

N + 1
sin

k2πm2

N + 1
sin

k3πm3

N + 1
sin

kπm

N + 1
sin

k1πm

N + 1

·
(
sin

k2π (m+ 1)

N + 1
sin

k3π (m+ 1)

N + 1
+ sin

k2π (m− 1)

N + 1
sin

k3π (m− 1)

N + 1

)
,

(A.14)
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A.2. Perturbational expansion starting from non-interacting systems

for the first order expansion. For the second order expansion we make use

of c
(2)
l and we have

Dα;m1m2m3m4m5 = π

(
2

N + 1

)7 ∑
k,m,k0,m0,k1,k2,k3,k4,k5

· sin πkm

N + 1

(
Π5

i=0 sin
πkimi

N + 1

)
sin

πklα
N + 1

sin
πk1lα
N + 1{

1

ε (k1) + ε (k3)− ε (k2)− ε (k0)

[
n (ε (k))− n (ε (k5)− ε (k0)− ε (k4))

ε (k0) + ε (k4)− ε (k5) + ε (k)

−n (ε (k))− n (ε (k1) + ε (k3) + ε (k5)− ε (k2)− ε (k4))

ε (k2) + ε (k4)− ε (k1)− ε (k3)− ε (k5) + ε (k)

]
· sin πk0lα

N + 1

∑
δ=±1

(
sin

πk2 (lα + δ)

N + 1
sin

πk3 (lα + δ)

N + 1

)
·
∑
δ=±1

(
sin

πk4 (lα + δ)

N + 1
sin

πk5 (lα + δ)

N + 1

)
+

1

ε (k2) + ε (k4)− ε (k3)− ε (k0)

[
n (ε (k))− n (ε (k0) + ε (k1) + ε (k5))

ε (k)− ε (k0)− ε (k1)− ε (k5)

−n (ε (k))− n (ε (k1) + ε (k3) + ε (k5)− ε (k2)− ε (k4))

ε (k2) + ε (k4)− ε (k1)− ε (k3)− ε (k5) + ε (k)

]
·
∑
δ=±1

(
sin

πk0 (lα + δ)

N + 1
sin

πk4 (lα + δ)

N + 1

πk5 (lα + δ)

N + 1

·
[
sin

πk2lα
N + 1

sin
πk3lα
N + 1

+ sin
πk2 (lα + 2δ)

N + 1
sin

πk3 (lα + 2δ)

N + 1

])
+

1

ε (k3) + ε (k5)− ε (k4)− ε (k0)

[
n (ε (k))− n (ε (k1)− ε (k0)− ε (k2))

ε (k) + ε (k0)− ε (k1) + ε (k2)

−n (ε (k))− n (ε (k1) + ε (k3) + ε (k5)− ε (k2)− ε (k4))

ε (k2) + ε (k4)− ε (k1)− ε (k3)− ε (k5) + ε (k)

]
·
∑
δ=±1

(
sin

πk0 (lα + δ)

N + 1
sin

πk2 (lα + δ)

N + 1
sin

πk3 (lα + δ)

N + 1

·
[
sin

πk4lα
N + 1

sin
πk5lα
N + 1

+ sin
πk4 (lα + 2δ)

N + 1
sin

πk5 (lα + 2δ)

N + 1

])}
.

(A.15)

Here we introduce a short-hand notation δ = ±1 in (lα + δ) to stand for the
neighbor sites of lα. In the last expression we have denoted n (ε (k) , Tα) as
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A.2. Perturbational expansion starting from non-interacting systems

n (ε (k)) to make it fit into the page width. Therefore up the the order of
V 2
0 , the bath operators can be written down as

m̂α =
∑
m

Dα;mcm + V0
∑

m1m2m3

Dα;m1m2m3cm1c
†
m2
cm3

+V 2
0

∑
m1m2m3m4m5

Dα;m1m2m3m4m5cm1c
†
m2
cm3c

†
m4
cm5 +O

(
V 3
0

)
(A.16a)

ˆ̄mα =
∑
m

D̄α;mc
†
m − V0

∑
m1m2m3

Dα;m1m2m3c
†
m3
cm2c

†
m1

−V 2
0

∑
m1m2m3m4m5

Dα;m1m2m3m4m5c
†
m5
cm4c

†
m3
cm2c

†
m1

+O
(
V 3
0

)
. (A.16b)

The same procedure is applicable for bosonic systems and similar ex-
pressions can be derived. This has been used in Chapter 5 to calculate the
operators m̂α and ˆ̄mα, and find non-equilibrium stationary states for bosonic
systems using the BBGKY-like method.
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Appendix B

Second-order cluster
expansion and second-order
equations of G1, G2

In this chapter we present explicitly forms of the second-order cluster ex-
pansion and the second-order equations for G1, G2.

B.1 Second-order cluster expansion

First-order cluster expansion as in Eq. (4.31) expresses G2 in terms of G1

and neglecting G2. For convenience, we rewrite it here,

G2

(
m†, n†,m

′
, n

′
)
= −G1

(
m†,m

′
)
G1

(
n†, n

′
)

+G1

(
m†, n

′
)
G1

(
n†,m

′
)
+G2

(
m†, n†,m

′
, n

′
)
. (B.1)
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B.2. Second-order equations of G1 and G2

A second-order cluster expansion similarly writes G3 in terms of G1, G2 and
neglecting G3[94],

G
(
m†

1,m
†
2,m

†
3,m4,m5,m6

)
= G

(
m†

1,m6

)
G
(
m†

2,m5

)
G
(
m†

3,m4

)
+G

(
m†

1,m5

)
G
(
m†

2,m4

)
G
(
m†

3,m6

)
+G

(
m†

1,m4

)
G
(
m†

2,m6

)
G
(
m†

3,m5

)
−G

(
m†

1,m6

)
G
(
m†

2,m4

)
G
(
m†

3,m5

)
−G

(
m†

1,m5

)
G
(
m†

2,m6

)
G
(
m†

3,m4

)
−G

(
m†

1,m4

)
G
(
m†

2,m5

)
G
(
m†

3,m6

)
(B.2a)

+G
(
m†

1,m6

)
G
(
m†

2,m
†
3,m4,m5

)
−G

(
m†

1,m5

)
G
(
m†

2,m
†
3,m4,m6

)
+G

(
m†

1,m4

)
G
(
m†

2,m
†
3,m5,m6

)
+G

(
m†

2,m5

)
G
(
m†

1,m
†
3,m4,m6

)
−G

(
m†

2,m4

)
G
(
m†

1,m
†
3,m5,m6

)
−G

(
m†

2,m6

)
G
(
m†

1,m
†
3,m4,m5

)
+G

(
m†

3,m4

)
G
(
m†

1,m
†
2,m5,m6

)
−G

(
m†

3,m5

)
G
(
m†

1,m
†
2,m4,m6

)
+G

(
m†

3,m6

)
G
(
m†

1,m
†
2,m4,m5

)
(B.2b)

+G
(
m†

1,m
†
2,m

†
3,m4,m5,m6

)
. (B.2c)

The same equation has been written down in short-hand notation in Eq.
(4.42).

B.2 Second-order equations of G1 and G2

Using the perturbational expansion of bath operators Eq. (A.13), Eq. (A.14)
and Eq. (A.15) together with cluster expansions Eq. (B.1) and Eq. (B.2),
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B.2. Second-order equations of G1 and G2

Eq. (4.7) of G1 — the first equation of the equation hierarchy becomes

0 = itG
(
(m− 1)†, n

)
+ itG

(
(m+ 1)†, n

)
−itG

(
m†, n+ 1

)
− itG

(
m†, n− 1

)
+λ2

∑
l,α

[
δnα

(
Dα;l + D̄∗

α;l

)
G
(
m†, l

)
+δmα

(
D̄α;l +D∗

α;l

)
G
(
l†, n

)]
+λ2V0

∑
α,m1,m2

(Dα;nm2m1 −Dα;m1m2n)G
(
m†

1,m2

)
δmα

+λ2V0
∑

α,m1,m2

(Dα;mm1m2 −Dα;m2m1m)G
(
m†

1,m2

)
δnα

+λ2V 2
0

∑
α,m1,m2,m3

[Dα;m3m2m1m3n +Dα;m3m3nm2m1

+Dα;nm2m3m3m1 −Dα;m1m2m3m3n

−Dα;m3m3m1m2n −Dα;m3m2nm3m1 ]G
(
m†

1,m2

)
δmα

+λ2V 2
0

∑
α,m1,m2,m3

[Dα;mm1m3m3m2 +Dα;m3m3mm1m2

+Dα;m3m1m2m3m −Dα;m3m1mm3m2

−Dα;m3m3m2m1m −Dα;m2m1m3m3m]G
(
m†

1,m2

)
δnα (B.3a)

−λ2
∑
α

(
δmαD̄α;n + δnαD̄

∗
α;m

)
+λ2V0

∑
α,m1

(Dα;m1m1nδmα +Dα;m1m1mδnα)

+λ2V 2
0

∑
α,m1,m2

(Dα;m1m1m2m2nδmα +Dα;m1m1m2m2mδnα) (B.3b)

−iV0G
(
m†, (n− 1)†, n, n− 1

)
+ iV0G

(
(m+ 1)†,m†, (m+ 1), n

)
−iV0G

(
(n+ 1)†,m†, n+ 1, n

)
+ iV0G

(
m†, (m− 1)†, n,m− 1

)
+λ2V 2

0

∑
α,m1,m2,m3,m4

{
G
(
m†

1,m
†
2,m3,m4

)
· [δmα (Dα;m1m3nm4m2 +Dα;nm3m2m4m1 −Dα;m2m4m1m3n)

+ δnα (Dα;m3m1mm2m4 −Dα;mm1m3m2m4 −Dα;m4m2m3m1m)]} (B.3c)
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B.2. Second-order equations of G1 and G2

Using the condensed Γ matrices notation introduced in Chapter 4, we can
denote this equation as (

Γ
(1)
H0

+ λ2Γ
(1)
B0

+ λ2V0Γ
(1)
B1

+ λ2V0Γ
(1)
B2

)
g1 =

λ2ν0 + λ2V0ν1 + λ2V 2
0 ν2 +

(
iV0 + λ2V 2

0

)
π (g1g1) +

(
iV0 + λ2V 2

0

)
g2. (B.4)

Similarly we can derive an equation for g2 truncated at the order of V 2
0

using these bath operators. It is a 10-pages long tedious equation so we here
just write down its formal form in condensed matrices notation,(

Γ
(2)
H0

+ λ2Γ
(2)
B0

+ λ2V0Γ
(2)
B1

+ λ2V0Γ
(2)
B2

)
(g2 + π (g1g1)) =

λ2g1 + λ2V0g1 + λ2V 2
0 g1 +

(
iV0 + λ2V 2

0

)
π (g1g1g1) +

(
iV0 + λ2V 2

0

)
π (g1g2) .

(B.5)

In the calculation illustrated in the main text, we truncated the bath oper-
ators at the order of V0 instead of V 2

0 . In this case, the second equation of
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B.2. Second-order equations of G1 and G2

the hierarchy becomes,

0 = itG
(
m†, (n− 1)† ,m

′
, n

′
)
+ itG

(
m†, (n+ 1)† ,m

′
, n

′
)

+itG
(
(m− 1)† , n†,m

′
, n

′
)
+ itG

(
(m+ 1)† , n†,m

′
, n

′
)

−itG
(
m†, n†,m

′
,
(
n

′
+ 1

))
− itG

(
m†, n†,m

′
,
(
n

′ − 1
))

−itG
(
m†, n†,

(
m

′
+ 1

)
, n

′
)
− itG

(
m†, n†,

(
m

′ − 1
)
, n

′
)

+iV0G
(
m†, n†,m

′
, n

′
)(

δm′+1,n′ + δm′−1,n′

)
−iV0G

(
m†, n†,m

′
, n

′
)
(δm+1,n + δm−1,n) (B.6a)

−iV0
∑

l=m±1,n±1

G
(
l†,m†, n†, l,m

′
, n

′
)

+iV0
∑

l=m′±1,n′±1

G
(
l†,m†, n†, l,m

′
, n

′
)

(B.6b)

−λ2
∑
α

{
δmα

[
G
(
n†,m

′
)
D̄α,n′ −G

(
n†, n

′
)
D̄α,m′

]
−δnα

[
G
(
m†,m

′
)
D̄α,n′ −G

(
m†, n

′
)
D̄α,m′

]
+δm′α

[
G
(
m†, n

′
)
D̄α,n −G

(
n†, n

′
)
D̄α,m

]
−δn′α

[
G
(
m†,m

′
)
D̄α,n −G

(
n†,m

′
)
D̄α,m

]}
(B.6c)

+λ2
∑
α,l

(
Dα,l + D̄α,l

)
·
[
δmαG

(
l†, n†,m

′
, n

′
)
+ δnαG

(
m†, l†,m

′
, n

′
)

+δm′αG
(
m†, n†, l, n

′
)
+ δn′αG

(
m†, n†,m

′
, l
)]

(B.6d)

· · · to be continued
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B.2. Second-order equations of G1 and G2

continued

+V0λ
2
∑
α,m1

{
δm′

α

[
G
(
m†, n

′
)
Dα,m1m1n −G

(
n†, n

′
)
Dα,m1m1m

+G
(
m†

1, n
′
)
(Dα,nm1m −Dα,mm1n)

]
−δn′

α

[
G
(
m†,m

′
)
Dα,m1m1n −G

(
n†,m

′
)
Dα,m1m1m

+G
(
m†

1,m
′
)
(Dα,nm1m −Dα,mm1n)

]
+δmα

[
G
(
n†,m

′
)
Dα,m1m1n

′ −G
(
n†, n

′
)
Dα,m1m1m

′

+G
(
n†,m1

)(
Dα,n′m1m

′ −Dα,m′m1n
′

)]
−δnα

[
G
(
m†,m

′
)
Dα,m1m1n

′ −G
(
m†, n

′
)
Dα,m1m1m

′

+G
(
m†,m1

)(
Dα,n

′
m1m

′ −Dα,m
′
m1n

′

)]}
(B.6e)

+V0λ
2

∑
α,m1,m2

{
δm′

α

[
Dα,m1n

′
m2
G
(
m†, n†,m1,m2

)
− (Dα,m1m2m −Dα,mm2m1)G

(
m†

2, n
†,m1, n

′
)

+(Dα,m1m2n −Dα,nm2m1)G
(
m†

2,m
†,m1, n

′
)]

− δn′
α

[
Dα,m1m

′
m2
G
(
m†, n†,m1,m2

)
− (Dα,m1m2m −Dα,mm2m1)G

(
m†

2, n
†,m1,m

′
)

+(Dα,m1m2n −Dα,nm2m1)G
(
m†

2,m
†,m1,m

′
)]

+ δmα

[
Dα,m1nm2G

(
m†

1,m
†
2,m

′
, n

′
)

+
(
Dα,m1m2n

′ −Dα,n′m2m1

)
G
(
n†,m†

1,m
′
,m2

)
−
(
Dα,m1m2m

′ −Dα,m
′
m2m1

)
G
(
n†,m†

1, n
′
,m2

)]
− δnα

[
Dα,m1mm2G

(
m†

1,m
†
2,m

′
, n

′
)

+
(
Dα,m1m2n

′ −Dα,n
′
m2m1

)
G
(
m†,m†

1,m
′
,m2

)
−
(
Dα,m1m2m

′ −Dα,m
′
m2m1

)
G
(
m†,m†

1, n
′
,m2

)]}
(B.6f)

Here G3 should be interpreted according to Eq. (4.42) but neglecting G3.
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B.2. Second-order equations of G1 and G2

However, for certain systems with relatively stronger interaction, it might
be necessary to use these new equations at the order of V 2

0 .
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Appendix C

Estimation of convergence of
the two methods of
truncating the BBGKY-like
hierarchy

In this chaprter we present our estimation of the leading order of G1 such

as ∆
E,(1)
1 and ∆

C,(1)
1 , defined in Chapter 4. We will see that ∆

E,(1)
1 in fact

involves ∆
E,(0)
2 , which in turn needs Eq. (4.8) — the equation of G2. A

similar equation is needed for estimation of ∆
C,(1)
1 .

C.1 ∆
E,(1)
1 from method 1

In order to estimate the accuracy of the first-order form of this approxima-
tion and also to get an estimate of accuracy for higher orders, we study the
leading order of residues in terms of λ2 and ∆T

T , both of which are assumed
to be small in the following. Thus λ2V0 � V0, therefore we know that in Eq.
(4.24) the gD term is smaller than the other g2 term so we drop it. Similarly
since λ2∆T � ∆T , we drop the λ2∆T term in λ2ν in Eq(4.24),

λ2ν = λ2ν0 (T ) + λ2∆Tν,T , (C.1)

and keep only the large term, λ2ν0 (T ), which is independent of ∆T . Here
ν,T denotes formally a derivative of T on ν — d

dT ν. The general idea is then

to write down respectively equations for gEx
1 and g

E,(1)
1 , and then compare

the two to estimate ∆
E,(1)
1 = g

E,(1)
1 − gEx

1 . In order to understand how an
approximation to the next order improves the accuracy, we also want to

compare ∆
E,(1)
1 to ∆

E,(0)
1 = g

E,(0)
1 −gEx

1 , which is estimated in the same way

from the difference between the equations respectively for gEx
1 and g

E,(0)
1 .

More generally we define ∆
E,(0)
n = g

E,(0)
n −gEx

n and ∆
E,(1)
n = g

E,(1)
n −gEx

n for
n-particle Green’s functions gn.
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C.1. ∆
E,(1)
1 from method 1

After dropping the gD term and the term which is proportional to λ2∆T ,

and keeping only up to the linear order of ∆T , gEx
1 , g

E,(0)
1 and g

E,(1)
1 respec-

tively satisfy (
Γ
(1)
0 + Γ

(1)
,T ∆T

)
gEx
1 = iV0g

Ex
2 + λ2ν0, (C.2a)

Γ
(1)
0 g

E,(0)
1 = iV0g

E,(0)
2 + λ2ν0, (C.2b)(

Γ
(1)
0 + Γ

(1)
,T ∆T

)
g
E,(1)
1 = iV0g

E,(0)
2 + λ2ν0, (C.2c)

where Γ
(1)
0 +Γ

(1)
,T ∆T is the zeroth and first order in ∆T from Γ(1) of Eq(4.24).

Γ
(1)
,T denotes formally a derivative of T on Γ(1) — d

dT Γ
(1). To consider ∆

E,(0)
1 ,

one may use Eq(C.2a) and Eq(C.2b),

∆
E,(0)
1 = ∆T

(
Γ
(1)
0

)−1
Γ
(1)
,T g

Ex
1 + iV0

(
Γ
(1)
0

)−1
∆

E,(0)
2 . (C.3)

∆
E,(1)
1 can be estimated from Eq(C.2a) and Eq(C.2c),

∆
E,(1)
1 = iV0

(
Γ
(1)
0 + Γ

(1)
,T ∆T

)−1
∆

E,(0)
2 , (C.4)

where ∆
E,(0)
2 is required. We find that roughly speaking ∆

E,(1)
1 takes the

second term of ∆
E,(0)
1 but drops the first term. Therefore, next we only need

to show that the second term, iV0

(
Γ
(1)
0

)−1
∆

E,(0)
2 , is much smaller than the

first term, or equivalently, smaller than the whole ∆
E,(0)
1 .

Estimation of ∆
E,(0)
2 involves the second equation of the hierarchy, i.e.

equation ofG2, which can be derived from substituting Eq(4.18) into Eq(4.8):
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C.1. ∆
E,(1)
1 from method 1

0 = it
〈
c†mc

†
ncm′ cn′+1

〉
+ it

〈
c†mc

†
ncm′ cn′−1

〉
+it

〈
c†mc

†
ncm′+1cn′

〉
+ it

〈
c†mc

†
ncm′−1cn′

〉
−it

〈
c†mc

†
n−1cm′ cn′

〉
− it

〈
c†mc

†
n+1cm′ cn′

〉
−it

〈
c†m−1c

†
ncm′ cn′

〉
− it

〈
c†m+1c

†
ncm′ cn′

〉
+λ2

∑
l,α

{
δn′

αdα;l

〈
c†mc

†
ncm′ cl

〉
+ δm′

αdα;l

〈
c†mc

†
nclcn′

〉
+δnαd̄α;l

〈
c†mc

†
l cm′ cn′

〉
+ δmαd̄α;l

〈
c†l c

†
ncm′ cn′

〉
+δnαd

∗
α;l

〈
c†mc

†
l cm′ cn′

〉
+ δmαd

∗
α;l

〈
c†l c

†
ncm′ cn′

〉
+δn′αd̄

∗
α;l

〈
c†mc

†
ncm′ cl

〉
+ δm′αd̄

∗
α;l

〈
c†mc

†
nclcn′

〉}
+iV0

〈
c†mc

†
ncm′ cn′

〉(
δm′

+1,n
′ + δm′−1,n

′ − δm+1,n − δm−1,n

)
(C.5a)

−iV0
∑

l=m±1,n±1

〈
c†l c

†
mc

†
nclcm′ cn′

〉
+iV0

∑
l=m

′±1,n
′±1

〈
c†l c

†
mc

†
nclcm′ cn′

〉
(C.5b)

−λ2
∑
α

[
δnαd̄α;m′

〈
c†mcn′

〉
+ δmαd̄α;n′

〈
c†ncm′

〉
+δm′αd̄

∗
α;n

〈
c†mcn′

〉
+ δn′αd̄

∗
α;m

〈
c†ncm′

〉
−δnαd̄α;n′

〈
c†mcm′

〉
− δmαd̄α;m′

〈
c†ncn′

〉
−δn′

αd̄
∗
α;n

〈
c†mcm′

〉
− δm′

αd̄
∗
α;m

〈
c†ncn′

〉]
(C.5c)

−λ2V0
∑
α

{
δm′

α

〈
c†mc

†
ncn′Dα

〉
− δn′

α

〈
c†mc

†
ncm′Dα

〉
+δmα

〈
c†ncm′ cn′ D̄α

〉
− δnα

〈
c†mcm′ cn′ D̄α

〉
+ δn′

α

〈
D̄†

αc
†
mc

†
ncm′

〉
−δm′

α

〈
D̄†

αc
†
mc

†
ncn′

〉
+ δnα

〈
D†

αc
†
mcm′ cn′

〉
− δmα

〈
D†

αc
†
ncm′ cn′

〉}
. (C.5d)

This can be written in a compact matrix form as

Γ(2)gEx
2 = iV0g

Ex
3 + λ2gEx

1 + λ2V0g
Ex
D3, (C.6)
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C.1. ∆
E,(1)
1 from method 1

where vector gEx
2 is defined as follows,

gEx
2 =

[
G2

(
1†, 1†, 1, 1

)
, G2

(
1†, 1†, 1, 2

)
, · · · , G2

(
N †, N †, N,N

)]T
.

(C.7)

Note that some of the elements of gEx
2 are naturally zero but we still keep

them in this vector. gEx
3 , gEx

1 and gEx
D3 come from ordering respectively

Eq(C.5b), Eq(C.5c) and Eq(C.5d) in the same way as gEx
2 . The matrix Γ(2)

can be read off from Eq(C.5a), for example assuming m,n,m
′
, n

′
are all

different and not equal to 1 or N , we have

Γ
(2)

mN3+nN2+m
′
N+n

′
,mN3+nN2+m

′
N+n

′
+1

= it. (C.8)

Since λ2V0 � V0 we drop the gEx
D3 term in the following estimation of the

accuracy. Therefore, the exact solution and the equilibrium solution satisfy
respectively, (

Γ
(2)
0 + Γ

(2)
,T ∆T

)
gEx
2 = iV0g

Ex
3 + λ2gEx

1 , (C.9a)

Γ
(2)
0 g

E,(0)
2 = iV0g

E,(0)
3 + λ2g

E,(0)
1 , (C.9b)

where Γ
(2)
0 and Γ

(2)
,T ∆T stand for the zeroth and first order in ∆T in Γ(2).

Now ∆
E,(0)
2 can be analyzed:

∆
E,(0)
2 = iV0

(
Γ
(2)
0

)−1
∆

E,(0)
3 +

(
Γ
(2)
0

)−1
Γ
(2)
,T ∆TgEx

2 +
(
Γ
(2)
0

)−1
λ2∆

E,(0)
1 .

(C.10)

Here, in fact Γ(1) and Γ(2) have different dimensions. However, in this esti-
mation of order of magnitudes, we ignore this difference and furthermore
the matrices are regarded as constants with order 1. For the moment,

let us focus on the last term of ∆
E,(0)
2 . Recall that we want to compare

iV0

(
Γ
(1)
0

)−1
∆

E,(0)
2 against ∆

E,(0)
1 . Focusing only on the last term, we have

iV0∆
E,(0)
2 ≈ iV0λ

2∆
E,(0)
1 , (C.11)

which is much smaller than ∆
E,(0)
1 as long as V0λ

2 � 1.
All together we have arrived at:

∆
E,(0)
1 = ∆T

(
Γ
(1)
0

)−1
Γ
(1)
,T g

Ex
1 + iV0

(
Γ
(1)
0

)−1
∆

E,(0)
2 (C.12)
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C,(1)
1 from method 2

while

∆
E,(1)
1 =

(
Γ
(1)
0

)−1
[
−V 2

0

(
Γ
(2)
0

)−1
∆

E,(0)
3 + iV0∆T

(
Γ
(2)
0

)−1
Γ
(2)
,T g

Ex
2

+iV0λ
2
(
Γ
(2)
0

)−1
∆

E,(0)
1

]
.

(C.13)

Most importantly here we see that ∆
E,(0)
1 is multiplied by a small number

λ2V0 and then becomes a part of ∆
E,(1)
1 . Judging from this it follows that,

as long as λ2V0 is a small number compared with t the method is very
reasonable. As for the other two additional terms, they can be regarded as(
V 2
0 g

Ex
3 + V0g

Ex
2

)
∆T . Therefore, the limit of maximum value of V0, where

this method is still applicable, is determined by
∣∣gEx

2

∣∣−1
or

∣∣gEx
3

∣∣− 1
2 . Such

limit could be much larger than 1 since roughly
∣∣gEx

n

∣∣ = ∣∣gEx
∣∣n — smaller

for larger n. This explains why this method is applicable even for V0 larger
than t, as confirmed from Fig.4.1.

C.2 ∆
C,(1)
1 from method 2

In order to estimate the accuracy of this approximation, let us assume that

λ2 and V0 are small. We define ∆
C,(0)
n = g

C,(0)
n − gEx

n and ∆
C,(1)
n = g

C,(1)
n −

gEx
n . Again we start from the equations of the three: g

C,(0)
1 , g

C,(1)
1 and gEx

1 ,
and then compare the three equations while ignoring certain higher-order
terms such as terms which are proportional to λ2V0.

In this case, after dropping the Γ
(1)
D term and terms which are propor-

tional to λ2V0, we find that gEx
1 , gC,0

1 and respectively g
C,(1)
1 satisfy the

following equations:

Γ
(1)
0 gEx

1 = iV0g
Ex
2 + λ2ν0, (C.14a)

Γ
(1)
0 g

C,(0)
1 = λ2ν0, (C.14b)

Γ
(1)
0 g

C,(1)
1 = iV0g

C,(1)
2 + λ2ν0. (C.14c)

From Eq(C.14b) and Eq(C.14a) we find

∆
C,(0)
1 = −iV0

(
Γ
(1)
0

)−1
gEx
2 . (C.15)
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C.2. ∆
C,(1)
1 from method 2

Comparing Eq(C.14c) and Eq(C.14a), we get

∆
C,(1)
1 = iV0

(
Γ
(1)
0

)−1 (
g
C,(1)
2 − gEx

2

)
. (C.16)

Note that the magnitude of ∆
C,(1)
2 =

(
g
C,(1)
2 − gEx

2

)
is in fact smaller than

the magnitude of ∆
C,(0)
2 =

(
g
C,(0)
2 − gEx

2

)
. Both involve the second equation

of the hierarchy, i.e. the equation for G2. So we may analyze the latter to
get an upper bound of the former. In this case, we substitute Eq(4.34) into
Eq(4.8). The resulting equation will have the same structure as Eq(C.5)
but every dα;l and d̄α;l are replaced respectively by Dα;m and Dα;m, and a
similar substitution for Dα and D̄α. Ignoring terms which are proportional

to λ2V0, it follows that g
Ex
2 and g

C,(0)
2 are respectively the solutions of

Γ
(2)
0 gEx

2 = iV0g
Ex
3 + λ2gEx

1 , (C.17a)

Γ
(2)
0 g

C,(0)
2 = λ2g

C,(0)
1 . (C.17b)

Comparing these two equations, we find that

∆
C,(0)
2 = −iV0

(
Γ
(2)
0

)−1
gEx
3 − λ2

(
Γ
(2)
0

)−1
∆

C,(0)
1 . (C.18)

Focusing only on the last term, we have

iV0∆
C,(0)
2 ≈ −iV0λ2∆C,(0)

1 , (C.19)

which is much smaller than ∆
C,(0)
1 as long as V0λ

2 � 1.
We arrived at:

∆
C,(0)
1 = −iV0

(
Γ
(1)
0

)−1
gEx
2 ∼ V0

∣∣gEx
1

∣∣2 , (C.20)

and

∆
C,(1)
1 =

(
Γ
(1)
0

)−1
[
iV 2

0

(
Γ
(2)
0

)−1
gEx
3 + λ2V0

(
Γ
(2)
0

)−1
∆

C,(0)
1

]
∼ V 2

0

∣∣gEx
1

∣∣3 + λ2V 2
0

∣∣gEx
1

∣∣2 . (C.21)

This agrees with the numerical results that ∆
C,(0)
1 is proportional to V0 while

∆
C,(1)
1 is proportional to V 2

0 . Most importantly, we see again that ∆
C,(0)
1 is

multiplied by a small number λ2V0 and then becomes a part of ∆
C,(1)
1 . Since
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C,(1)
1 from method 2

roughly
∣∣gEx

n

∣∣ = ∣∣gEx
∣∣n, the other term, V 2

0 g
Ex
3 ∼ V 2

0

∣∣gEx
1

∣∣3, is also much

smaller than ∆
C,(0)
1 ∼ V0

∣∣gEx
1

∣∣2. However, for large enough V0 the other
approximation used in this method, the perturbational expansion of the
operators m̂, becomes invalid. Therefore, as long as V0 is a small number
compared to t the method is very reasonable. It should be noted that this
method is capable of dealing with large systems since it does not require a
direct diagonalization of a 2N -dimension matrix.
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Appendix D

Coherent states and
coherent-state representation

To provide a convenient reference, in this appendix, we briefly describe the
general idea of coherent-state representation. More details can be found in
for example Ref. [70, 71]. Here we will only discuss bosonic coherent states.
Fermionic ones can be defined similarly with the usual complex numbers
replaced by Grassman numbers[71].

In the §D.1, coherent states for single-mode bosonic systems is intro-
duced and the simplest P -representation is discussed. In the §D.2, we discuss
correspondingly the coherent-state representations for multi-mode bosonic
systems. We also briefly review the more general positive P -representation.

D.1 Coherent states for systems with a single
mode

A single-mode bosonic system is defined by a Hamiltonian H
(
a, a†

)
, where

a, a† are respectively annihilation and creation operators of a particle with
the particular mode. Its Hilbert space, expanded in occupation-number
representation, is {|n〉}, where n = 0, 1, 2, · · · .

A coherent state |ξ〉 is defined to be an eigenstate of annihilation oper-
ator,

a |ξ〉 = ξ |ξ〉 (D.1)

with eigenvalue ξ. Operator a is not a hermitian operator so ξ is not a real
but a complex number (c-number). Let us define a displacement operator

D (ξ) = eξa
†−ξ∗a, (D.2)

which equals to

D (ξ) = e−
|ξ|2
2 eξa

†
e−ξ∗a, (D.3)
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D.1. Coherent states for systems with a single mode

utilizing the Baker-Campbell-Hausdorff formula[70]. From there one can
verify that

|ξ〉 = D (ξ) |0〉 , (D.4)

where |0〉 is the vacuum state.
This can be seen in the following. Let us express D (ξ) |0〉 in terms

occupation-number states |n〉 and note |n〉 = (a†)
n

√
n!

|0〉,

D (ξ) |0〉 = e−
|ξ|2
2 eξa

† |0〉

= e−
|ξ|2
2

∞∑
n=0

ξn

n!

(
a†
)n

|0〉

= e−
|ξ|2
2

∞∑
n=0

ξn√
n!

|n〉 . (D.5)

Therefore

aD (ξ) |0〉 = e−
|ξ|2
2

∞∑
n=0

ξn√
(n− 1)!

|n− 1〉

= ξe−
|ξ|2
2

∞∑
m=0

ξm√
(m)!

|m〉 = ξD (ξ) |0〉 . (D.6)

Inner product between two coherent states |ξ〉 and |η〉 is,

〈ξ | η〉 = eξ
∗η− |ξ|2

2
− |η|2

2 , (D.7)

so

|〈ξ | η〉|2 = e−|ξ−η|2 , (D.8)

which is close to zero when ξ is very different from η. This implies that
although no pair of the coherent states are orthogonal to each other but
the overlap tends to be small if their corresponding eigenvalues are very
different.

This suggests that maybe the set of coherent states can be used as a
basis to expand operators and vectors. Due to the non-orthogonal relation,
such forms of basis are not unique. One particular convenient and important
choice is

I =
1

π

∫
d2ξ |ξ〉 〈ξ| . (D.9)

149



D.1. Coherent states for systems with a single mode

This can be verified by considering arbitrary |n〉 such that

|n〉 = 1

π

∫
d2ξ |ξ〉 〈ξ |n〉 , (D.10)

which becomes

|n〉 =
∑
m

1

π

∫
d2ξ |m〉 〈m |ξ〉 〈ξ |n〉

=
∑
m

|m〉 1
π

∫
d2ξe−|ξ|2 ξm√

(m)!

(ξ∗)n√
(n)!

=
∑
m

|m〉 δmn = |n〉 . (D.11)

Here we have used

1

π

∫
d2ξe−|ξ|2 ξm√

(m)!

(ξ∗)n√
(n)!

= δmn, (D.12)

which is 1 only when m = n and zero otherwise.
With this basis, a density matrix ρ (or a more general physical observable

operator A) can always be expanded as[126]

ρ =
1

π2

∫∫
d2ξd2ηe−

|ξ|2
2

− |η|2
2 R (ξ∗, η) |ξ〉 〈η| . (D.13)

where

R (ξ∗, η) = e
|ξ|2
2

+
|η|2
2 〈ξ| ρ |η〉 . (D.14)

This distribution function R (ξ∗, η) holds generally for all ρ and it is called
the R representation. However, since the overcompleteness and the non-
uniqueness of the coherent-state representation, there are other expansions,
which hold not for all but a large class of density matrices[70]. For exam-
ple, the P representation and the Positive P representation are respectively
defined as

ρ =

∫
d2ξP (ξ∗, ξ) |ξ〉 〈ξ| , (D.15)

and

ρ =

∫∫
d2ξd2ηP (ξ, η) e

|ξ|2
2

+
|η|2
2

−ξη |ξ〉 〈η∗| . (D.16)
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D.2. Coherent states for multi-mode systems

Next we convert operator a and a† to be operators acting on such distribution
function P , in for example, the P representation. For aρ,

aρ =

∫
d2ξP (ξ∗, ξ) a |ξ〉 〈ξ|

=

∫
d2ξξP (ξ∗, ξ) |ξ〉 〈ξ| , (D.17)

so a→ ξ. For a†ρ, noticing a† |ξ〉 = d
dξ |ξ〉

a†ρ =

∫
d2ξP (ξ∗, ξ)

(
d

dξ
|ξ〉

)
〈ξ|

=

∫
d2ξ

(
ξ∗ − d

dξ

)
P (ξ∗, ξ) |ξ〉 〈ξ| , (D.18)

so a† → ξ∗ − d
dξ . Similarly we need to consider also ρa and ρa†. Summarize

all those operators, we have

aρ↔ ξP (ξ∗, ξ) ,

ρa† ↔ ξ∗P (ξ∗, ξ) ,

a†ρ↔
(
ξ∗ − ∂

∂ξ

)
P (ξ∗, ξ) ,

ρa↔
(
ξ − ∂

∂ξ∗

)
P (ξ∗, ξ) . (D.19)

D.2 Coherent states for multi-mode systems

For a multi-mode (countably many, denoted as N) system, a coherent basis
can be defined similarly as∣∣∣~ξ〉 = D

(
~ξ
)
|0〉 = e

~ξ·~a†−~ξ∗·~a |0〉 = e−
|~ξ|2
2 e

~ξ·~a† |0〉 , (D.20)

where ~ξ = (ξ1, ξ2, · · · , ξN )T and ~a† =
(
a†1, a

†
2, · · · a

†
N

)T
. a†l is the creation

operator at site l, ξl is a c number and |0〉 is the vacuum state. Coherent
states are over complete. One convenient choice of representation is the
P -representation[70], which decomposes the identity as

I =
1

π

∫
d2~ξ

∣∣∣~ξ〉〈
~ξ
∣∣∣ , (D.21)
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D.2. Coherent states for multi-mode systems

and it maps a density matrix ρ (a physical quantityA) to a function P
(
~ξ∗, ~ξ

)
(A

(
~ξ∗, ~ξ

)
) such that

ρ =

∫
d2~ξP

(
~ξ∗, ~ξ

) ∣∣∣~ξ〉〈
~ξ
∣∣∣ , (D.22)

〈A〉 =
∫
d2~ξP

(
~ξ∗, ~ξ

)
A
(
~ξ∗, ~ξ

)
. (D.23)

If A is in normal order of al, a
†
l .

In this representation, operators a, a† become differential operators on

P
(
~ξ∗, ~ξ

)
,

alρ↔ ξlP
(
~ξ∗, ~ξ

)
,

ρa†l ↔ ξ∗l P
(
~ξ∗, ~ξ

)
,

a†l ρ↔
(
ξ∗l −

∂

∂ξl

)
P
(
~ξ∗, ~ξ

)
,

ρal ↔
(
ξl −

∂

∂ξ∗l

)
P
(
~ξ∗, ~ξ

)
. (D.24)

In this way, the operator-form QME can be mapped to a differential equa-
tion.
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Appendix E

Fokker-Planck equation and
Langevin equation

A standard Fokker-Planck equation with time-independent coefficients reads,

∂

∂t
P
(
~ξ, t

)
=

−∑
j

∂

∂ξj
Aj

(
~ξ
)
+

1

2

∑
i,j

∂2

∂ξi∂ξj
Dij

(
~ξ
)P (

~ξ, t
)
. (E.1)

When there are higher-order derivative terms besides the above first two
terms, it is called a generalized Fokker-Planck equation. The Pawula theorem[98]

states that in order to keep the distribution function (P
(
~ξ, t

)
) non-negative,

there has to be either only 2 terms or infinity terms. In the later case, unless
the equation is exactly solvable usually the generalized Fokker-Planck equa-
tion is truncated first and then solved. However, while truncation at the
second order keeps the positiveness, a further truncation beyond the second
order which destroys such positiveness in small regions, could result a more
accurate distribution function[98].

In this appendix we discuss solutions of the Fokker-Planck equation and
the generalized Fokker-Planck equation. Note here ~ξ is a vector of real
random variables. It is not directly applicable for the generalized Fokker-
Planck equation in c-numbers we derived in the previous chapters.

E.1 Langevin equation for standard
Fokker-Planck equations

There are several approaches to solve the standard Fokker-Planck equation

besides brute-force numerical solution in the whole space of
{
~ξ
}
. Convert-

ing it to a set of equivalent Langevin equation[98] with white noise and
then numerically simulate the Langevin equation is a common and general
method. A standard Langevin equation states,

ξ̇i = hi

(
~ξ
)
+ gij

(
~ξ
)
wj (t) , (E.2)

153



E.1. Langevin equation for standard FPEs

where we only consider the time-independent coefficients Aj

(
~ξ
)
and Dij

(
~ξ
)
,

and ~w (t) is a white noise,

〈wi (t)〉 = 0, 〈wi (t)wj

(
t′
)
〉 = δijδ

(
t− t′

)
. (E.3)

Using Itô calculus[98], one can define a correspondence between the standard

Fokker-Planck equation and the Langevin equation. Assuming Dij

(
~ξ
)

is

positive semidefinite such that there is a matrix G satisfying

D
(
~ξ
)
= G

(
~ξ
)
G†

(
~ξ
)
, (E.4)

then

gij

(
~ξ
)
= Gij

(
~ξ
)
, (E.5)

hi

(
~ξ
)
= Ai

(
~ξ
)
. (E.6)

In numerical simulation, one works with directly

dξi = hi

(
~ξ
)
dt+ gij

(
~ξ
)
dWj (t) , (E.7)

where

〈dWi (t)〉 = 0, 〈dWi (t) dWj

(
t′
)
〉 = δijdtδt,t′ . (E.8)

Here δt,t′ is the Kronecker δ not the Dirac δ.
Another way to solve the Fokker-Planck equation is to convert it into

equations of correlations by considering for example, 〈xl〉 and 〈xlxm〉 etc..
Let us work out the first derivative term for the above one-variable average,

d

dt
〈ξl〉 = −〈ξl

∑
j

∂

∂ξj
Ai〉

= −〈
∑
j

∂

∂ξj
ξlAi〉+ 〈Ai

∑
j

∂

∂ξj
ξl〉 = 〈Al〉. (E.9)

Here we have used the following property: for arbitrary F
(
~ξ
)
, as long as

limξj−→∞ F
(
~ξ
)
does not diverge, we have

〈 ∂
∂ξj

F
(
~ξ
)
〉 =

∫
d2~ξ

∂

∂ξj

[
F
(
~ξ
)
P
(
~ξ
)]

= 0. (E.10)

In this way, one can derive equations for correlations of any number of
variables. However, then one has to solve such possibly coupled equations
if many-variable correlations are of interest.
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E.2. Analytical solution for the Ornstein-Uhlenbeck process

E.2 Analytical solution for the
Ornstein-Uhlenbeck process

For a special case – the Ornstein-Uhlenbeck process, there is an analytical
solution. An Ornstein-Uhlenbeck process has a constant diffusion matrix D
and a linear drift term ~A = Γ~ξ. We further require Γ is positive definite in or-
der to have a non-divergent distribution function. Although time-dependent
solution is also possible, here we focus on stationary solution,

P = (2π)−
N
2 (Detσ)−

1
2 e−

1
2
~ξT σ−1~ξ, (E.11)

where

σ =
∑
l,m

1

κl + κ∗m

〈
vl |D | vm

〉
|ul〉〈um| , (E.12)

and
Γ =

∑
l

κl

∣∣∣ul〉〈vl∣∣∣ . (E.13)

The last expression defines
〈
vl
∣∣ (|ul〉) as the left (right) eigenvector of Γ with

eigenvalue κl. Out of all above approaches, only the simulation via Langevin
equation is generally applicable, even for generalized Fokker-Planck equa-
tions.

E.3 Stochastic difference equation for truncated
generalized Fokker-Planck equations

A generalized Fokker-Planck equation with time-independent coefficients
truncated at the third-order derivatives reads,

∂

∂t
P
(
~ξ
)
=

−∑
j

∂

∂ξj
Aj

(
~ξ
)
+

1

2

∑
i,j

∂2

∂ξi∂ξj
Dij

(
~ξ
)

+
1

6

∑
i,j,k

∂3

∂ξi∂ξj∂ξk
Dijk

(
~ξ
)P (

~ξ
)
. (E.14)

Now let us solutions of this generalized Fokker-Planck equation. For such
generalized Fokker-Planck equation an equivalent stochastic difference equation[102]
for numerical molecular dynamical simulations can be found. In that case,
usually the positive P -representation[72] or the gauge P -representation is
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E.3. Stochastic difference equation for truncated GFPEs

used. The basic idea is to use proper random variables to mimic the effect
of the third order term just like what was done for the second derivative
terms. For example,

∂

∂ξi
Ai → 〈∆ξi〉 = Ai∆T, (E.15)

∂2

∂ξi∂ξj
Dij → 〈∆ξi∆ξj〉 = Dij∆T, (E.16)

∂3

∂ξi∂ξj∂ξk
Dijk → 〈∆ξi∆ξj∆ξk〉 = Dijk∆T. (E.17)

Therefore, there will be terms like ηijk (∆T )
1
3 appearing in the stochastic

difference equation to make sure the above average holds,

∆ξi = hi∆t+ gi (∆t)
1
2 + ki (∆T )

1
3 . (E.18)

just like gi happens to be gijwj such that Eq. (E.16) is satisfied, ki has to
be defined properly to obey Eq. (E.17). Generally relation between ki and
Dijk is still missing, but specific forms for example equations can be found
in Ref.[102].
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Appendix F

Solving the Redfield
equation and the
local-operator Lindblad
equation of bosonic systems
with BBGKY-like hierarchy

The BBGKY-like method is based on the equation of motion of the Green’s
functions. The method starts from turning the Redfield equation, Eq. (4.2)
into equation of motion of Green’s functions, which is defined by single-

particle Green’s function G
(
l†;n

)
=

〈
a†l anρ (∞)

〉
(G1 for short), two-article

Green’s function G
(
i†, j†; l, n

)
=

〈
a†ia

†
jalanρ (∞)

〉
(G2 for short) and so

on. Here again the density matrix ρ (∞) refers to a stationary state and
it is defined by Lρ (∞) = 0. Then generally for interacting systems the
stationary equation becomes an equation hierarchy, in the first order of
which are equations for G1. But such G1 is coupled to G2. The next order
in the hierarchy are equations for G2 and such G2 is coupled to G1 and G3,
and so on. The hierarchy can be truncated and solved if one takes certain
further approximations such as cluster expansion[101]. Since the difference
between the Redfield equation and the local-operator Lindblad equation is
only at the bath operators, the following calculation is in fact valid for both
equations. Of course, all those coefficients Dγ,m should then be substituted
properly for the local-operator Lindblad equation.

The operator-form Redfield equation reads

∂ρ

∂t
= LH0ρ+ ULV ρ+ λ2L0

Bρ+ λ2UL1
Bρ, (F.1)
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F.1. Exact solution on non-interacting systems

where

LH0ρ = −i
N−1∑
l=1

[
a†l al+1 + a†l+1al, ρ

]
(F.2a)

LV ρ =
−i
2

N∑
l=1

[
a†l al

(
a†l al − 1

)
, ρ
]

(F.2b)

L(0)
B ρ = −

∑
γ=L,R

{
Dγ,m

[
a†γ , amρ

]
+ D̄γ,m

[
aγ , a

†
mρ

]
+ h.c.

}
(F.2c)

L(1)
B ρ = −

∑
γ,m1,m2,m3

Dγ,m1m2m3

{[
a†γ , a

†
m1
am2am3ρ

]
+
[
aγ , a

†
m3
a†m2

am1ρ
]
+ h.c.

}
. (F.2d)

Let us now transform the above Redfield equation in the operator form
into equations of Green’s functions by multiplying a†l an at the RHS of
Eq.(3.30) and then performing a trace,

0 = −i〈a†l an+1〉 − i〈a†l an−1〉+ i〈a†l+1an〉+ i〈a†l−1an〉 (F.3a)

+λ2
∑
γ,m

(
D̄γ,m −Dγ,m

) [
δnγ〈a†l am〉+ δlγ〈a†man〉

]
(F.3b)

+λ2
∑
γ

(
D̄γ,nδlγ + D̄γ,lδnγ

)
(F.3c)

+iU〈a†l a
†
l alan〉 − iU〈a†l a

†
nanan〉 (F.3d)

+λ2U
∑
γ,mi

Dγ,m1m2m3

[
δnγ

(
〈a†m1

am2〉δlm3 + 〈a†m1
am3〉δlm2

)
+δlγ

(
〈a†m2

am1〉δnm3 + 〈a†m3
am1〉δnm2

)]
. (F.3e)

F.1 Exact solution on non-interacting systems

Note that when U = 0 only Eq. (F.3a), Eq. (F.3b) and Eq. (F.3c) are there
so that this equation is closed. In this section we consider only the U = 0

case. This is an N2-dimension linear system for unknown G
(0)
1 , where (0)

refers to U = 0,

ΓH0g
(0)
1 + λ2ΓB0g

(0)
1 = λ2ν(0). (F.4)

Here we arrange all unknownG1 into a vector g1 = (G1 (1, 1) , G1 (1, 2) , · · · , )T .
Elements of the two matrices and the vector can be read off from Eq. (4.7).
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F.2. Approximate solution on interacting systems

For example,

(ΓH0)l∗N+n,l∗N+n+1 = −i, (F.5)

and when l = 1 (or l = N , or n = 1, N),

ν
(0)
1∗N+n = λ2D̄1,n, (F.6)

otherwise, it is zero. Solving this N2-dimension linear system we find all
G1.

F.2 Approximate solution on interacting systems

Note that when U 6= 0 this equation is not closed. This means that one
need to consider the next order equation in terms of G2 together to solve the
whole Eq.(3.30). One can derive such equation by multiplying a†ia

†
jalan and

then performing a trace. In fact, if one do so, one will find that equations
of G2 is coupled to G3 and so on[101]. Therefore, one has to solve the
whole hierarchy to solve Eq.(3.30) exactly, which is as hard as dealing with
directly Eq. (3.30). So we have to come up with some further approximation
to truncate the hierarchy and then solve it. In the present work, we will
truncate the hierarchy at the first order by using the cluster expansion[101],

〈a†l a
†
l alan〉 = 2〈a†l al〉〈a

†
l an〉+ o (U) . (F.7)

So we will do not need explicitly the second order equations here.
After taking the approximation of the cluster expansion, Eq. (F.3d)

becomes,

iU2〈a†l al〉〈a
†
l an〉 − iU2〈a†l an〉〈a

†
nan〉. (F.8)

Therefore, Eq. (F.3) becomes a closed equation,

ΓH0g
(1)
1 + λ2ΓB0g

(1)
1 + λ2UΓB1g

(1)
1 = λ2ν(0) + iUπ

(
g
(1)
1

)
, (F.9)

where

π
(
g
(1)
1

)
l∗N+n

= 2
(
g
(1)
1

)
l∗N+n

(
g
(1)
1

)
n∗N+n

−2
(
g
(1)
1

)
l∗N+l

(
g
(1)
1

)
l∗N+n

. (F.10)
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F.2. Approximate solution on interacting systems

This equation can be solved iteratively,

g
[n+1]
1 =

(
ΓH0 + λ2Γ

(0)
D + λ2UΓ

(1)
D

)−1 [
λ2ν(0) + iUΠ

(
g
[n]
1

)]
, (F.11)

with initial solution g[0] = g
(0)
1 for the corresponding non-interacting system.

Then the solution is

g
(1)
1 = lim

n→∞
g
[n]
1 , (F.12)

which in practice stops at large enough n such that g
[n]
1 − g

[n−1]
1 is small

enough.
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