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ABSTRACT: The original motivation for scaled particle theory
(SPT) is to derive a simple equation of state for a bulk hard sphere
(HS) fluid. It is now widely recognized that SPT provides also the
surface tension of a HS fluid near a spherical hard wall, including
three contributions, i.e., the planar surface tension and two bending
rigidities due to the surface curvatures (integrated mean and Gauss
curvatures). This conforms to the basic assumption of morpho-
logical thermodynamics. The existence of non-Hadwiger terms, i.e.,
higher-order curvature terms, has been evidenced recently.
Augmenting SPT by only one non-Hadwiger term, i.e., third-
order curvature term, allows us to obtain two new analytical
theories, which not only describe very accurately bulk thermody-
namic properties but also improve systematically surface ones with
respect to SPT.

1. INTRODUCTION

Worked out by Reiss, Frisch, and Lebowitz in 1959,1 scaled
particle theory (SPT) has become a very successful theory in
liquid physics with widespread applications.2,3 Continuous
efforts are made to extend and improve it (see, e.g., ref 4−28,
which is by no means an exhaustive list of the very large
number of papers on SPT in the literature). The initial
motivation for SPT was to derive a simple equation of state for
a bulk hard sphere (HS) fluid. It is now well recognized that
SPT provides not only the bulk thermodynamic properties but
also the surface tension of a HS fluid near a spherical hard wall.
Within the framework of SPT, this surface tension includes
three contributions, i.e., the planar surface tension and two
bending rigidities due to surface curvatures, i.e., integrated
mean and Gauss curvatures. Accompanying the investigation of
more and more complex inhomogeneous systems, e.g., fluids
adsorbed in nanoporous materials, there is an increasing need
to understand better interfacial thermodynamic properties.
Although early studies go back to Tolman,29 it might appear
surprising that our knowledge about curved interfaces is still
quite limited. Mecke and co-workers have made efforts to
develop a general framework, named morphological thermody-
namics, to account for more complex surface morphology.30−38

According to the Hadwiger theorem in integral geometry,39,40

the morphological thermodynamics postulates that the
thermodynamic potential of an inhomogeneous system is
determined only by four terms, i.e., one bulk contribution
proportional to the system’s volume and three surface
contributions proportional respectively to the surface area,
mean, and Gauss curvatures of the interface. It is to be pointed

out that in SPT, the work for forming a spherical cavity inside a
HS fluid is assumed to have this form. The foundation of
morphological thermodynamics has been questioned re-
cently.41−44 From molecular dynamics simulations, Laird et
al. found that contributions from the higher-order curvatures
to surface tension are not negligible.41 Using the diagrammatic
expansion of surface tension, Urrutia43 and Hansen-Goos44

showed, with exact analytic results, that the contribution of the
third-order curvature term to the surface tension does not
vanish. Now, it is clear that the contribution from the higher-
order curvature terms is lacking in SPT. Is it possible to
include some non-Hadwiger terms in SPT? Does this
necessarily improve SPT? With a particular choice for the
dividing surface to define the surface tension, this can be done
straightforwardly, and some previous efforts have been devoted
to this by Siderius and Corti.16,17 In the present work, we
explore another choice for the dividing surface and show the
different strategies to circumvent the mathematical difficulty
associated with our choice. It will be shown that including
higher-order curvature terms does not guarantee an overall
improvement of SPT. How can non-Hadwiger terms be
included in a simple and efficient way, i.e., obtaining still a
totally analytic theory? We address all these issues in the
present work.
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2. THEORY
2.1. Original SPT. A brief recall of SPT is given first to

introduce some notations and formulas needed in the
following sections. Although its spirit is strictly the same as
the original SPT, we present here a pedagogically more
appealing formulation based on the chemical potential of the
scaled particle28 instead of the contact radial distribution
function, which has been the central quantity considered in the
original SPT and many later investigations on SPT. For the
chemical potential to insert a hard scaled particle with a radius,
Rs (a variable one), into a fluid of hard spheres of radius, R, the
following exact but formal result is well known1

R
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V
p R( ) ln
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where Λ is the thermal wavelength, β = 1/kT (k: Boltzmann
constant, T: temperature), V is the volume, and N is the
number of hard spheres. We consider here the case that the
scaled particle has the same mass as the HS particles already in
the system and so they have the same thermal wavelength. The
scaled particle becomes indistinguishable from the other fluid
particles only when Rs = R. In eq 1, we account for this
indistinguishability by
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In eq 1, p0(Rs) is the probability for making a spherical cavity
of radius Rs in the HS fluid, and the following exact expression
holds
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where ρ(n) (r1, r2, ..., rn) is the distribution function of n
particles located, respectively, at r1, r2, ..., rn and
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A property of key importance of eq 3 is that the higher-order
terms appear only successively when the radius of the scaled
particle increases. For example, we have
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F R n R R R( ) 0 3 (2 3 )/ 3n s s= ≥ − < ≤ − (9)

where η = 4πρR3/3 is the packing fraction of hard spheres (ρ =
N/V being fluid density) and Ω(|r1 − r2|) is the volume of the
overlapping region of two spheres having a radius of Rs + R and
separated by a distance of |r1 − r2|, which is given by
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Although eqs 1 and 3 indicate a possible road for obtaining
chemical potential, one encounters quickly several major
obstacles on this road. First, eq 3 is an infinite series and we do
not know how it converges for an arbitrary value of Rs.
Moreover, only F1(Rs) has an analytical expression and it is
more and more difficult to determine the other higher-order
terms.
The strategy used for deriving the original SPT is to use the

above exact result in a limited range of Rs, i.e.
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For larger values of Rs, the following thermodynamic
expression is proposed
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where P is the pressure of the HS fluid and the terms of lower
powers of Rs account for the surface tension around the scaled
particle, which can be considered as a hard spherical wall for
the HS fluid. w2 is related to the surface tension on a planar
hard wall and w1 and w0 are, respectively, the bending rigidities
related to mean and Gauss curvatures. In eq 12, there is no
higher-order curvature terms (non-Hadwiger terms), i.e., terms
like Rs

−n (n = 1, 2, 3, ...). It is to be pointed out that if eq 12 is
replaced by
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we obtain the same results for the bulk thermodynamic
properties, e.g., pressure and chemical potential, but the results
for w̃0, w̃1, and w̃2 are different from those for w0, w1, and w2 in
eq 12, since these coefficients are related to surface tension and
depend on the choice of the dividing surface.28 In eq 12, the
dividing surface is chosen at the surface of the scaled particle,
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i.e., at Rs, while in eq 13, it is chosen at the surface of the cavity
inside which there is no center of fluid particles, i.e., at Rs + R.
The latter choice was made in the original SPT and many later
investigations on SPT. We prefer the choice at the surface of
the scaled particle and will explain later the reason in more
detail.
Matching eqs 11 and 12 at Rs = 0, i.e., requiring the

continuity of the function and the two first derivatives, one
obtains
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The chemical potential, μ, and the pressure, P, can be obtained
from

W R R( )sβμ β= = (17)

and Gibbs−Duhem equation, i.e.

P( ) ( )β
ρ

ρ βμ
ρ

∂
∂

= ∂
∂ (18)

Finally, one obtains

P 1
(1 )

SPT 2

3
β

ρ
η η

η
= + +

− (19)

P

ln( ) ln(1 )
6

1
9
2 1

SPT 3
2

SPT

βμ ρ η η
η

η
η

η β
ρ

= Λ − − +
−

+
−

+

i
k
jjjj

y
{
zzzz

(20)

for the pressure and chemical potential of a bulk HS fluid.
Moreover, one obtains also the following dimensionless result
for the surface tension of a HS fluid on a spherical hard wall of
radius Rs
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where γ̃0
SPT is the SPT result for the surface tension of a HS

fluid on a planar hard wall
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and γ̃−1
SPT and γ̃−2

SPT are, respectively, the bending rigidities
related to mean and Gauss curvatures within the framework of
SPT

w R
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It is clear from eq 21 that the dividing surface for the hard wall
is chosen at Rs.

2.2. Augmented SPT. 2.2.1. Single-Point Matching
Formulation. A conceptually straightforward strategy to
include a high-order curvature contribution into an SPT type
theory is to add a term proportional to Rs

−1 into eq 12.
However, the immediate difficulty one meets with here is that
the divergence of this term at Rs = 0 makes impossible the
usual matching procedure at this point. This difficulty is
directly related to our choice of the dividing surface at Rs.
Previously, Corti and co-workers proposed several approaches
for improving SPT by including higher-order curvature terms
of the form (Rs + R)−n (n = 1, 2, 3), but with the dividing
surface chosen at Rs + R. As pointed out by Corti et al.,15−17

the approach by augmenting eq 12 with different higher-order
curvature terms can be considered as using a Laurent series for
the insertion chemical potential. It is not difficult to admit that
the Laurent series written in different ways, i.e., in terms of Rs
or Rs + R, can have different convergence radii and different
convergence rates. Some recent works concerning curved
surfaces provided indications that the choice of dividing
surfaces really matters. Urrutia reported a systematic
investigation on the effect of dividing surfaces on the accuracy
of surface tension and bending rigidities given by a large variety
of theories with respect to simulations and found that the
approximate theories always perform better with the dividing
surface chosen at Rs.

43 Moreover, Reindl, Bier, and Dietrich
found that more accurate results are obtained from
morphological thermodynamics with the choice of dividing
surface chosen at Rs rather than at Rs + R.45 These results
imply that the Laurent series in terms of Rs converges more
rapidly and this is why we chose the dividing surface at Rs
rather than at Rs + R. We propose below two recipes for
removing the singularity at Rs = 0. It is also to be noted that
the excess adsorption is smaller for the dividing surface at Rs
than that with the dividing surface at Rs + R and in
consequence, the surface tension is smaller in the former
case. Thus, choosing a dividing surface that minimizes surface
tension seems to be an advantageous strategy.
One possible way to circumvent the difficulty of divergence

at Rs = 0 in the matching procedure is to replace 1/Rs by
hn(Rs) = (1 − e−Rs/δ)n/Rs, with δ being a real positive constant
and n a positive integer. The convergence factor removes the
singularity at Rs = 0 and keeps the correct asymptotic form of
the third-order curvature for large values of Rs. In principle, n
can be any positive integer but we can quickly limit the choice
of n to a very few cases, which may be interesting for our
purpose here. If the original SPT form given in eq 12 is
augmented by adding a term proportional to hn(Rs) with n ≥ 5,
i.e.
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the same results as SPT will be found for ϕ0, ϕ1, ϕ2, and P
since the added third-order curvature term does not affect the
other terms. However, our objective here is to obtain also
improved results for ϕ0, ϕ1, ϕ2, and P by adding the non-
Hadwiger term. Hence, we need to consider only the cases of n
= 1, 2, 3, 4. We worked out all these cases and eliminated the
choices of n = 2, 4 since the contribution of the non-Hadwiger
term is not correctly described with the first non-vanishing
Virial coefficient for this term being negative, while the exact
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one is positive. For the remaining cases, i.e., n = 1, 3, the choice
of n = 3 gives more accurate results for the non-Hadwiger
term, and we will present only the results for this case, i.e.,
substituting h3(Rs) into eq 25. The determination of the
parameter, δ, will be discussed later in Section 3.1.
To determine ϕn (n = −1, 0, 1, 2), we follow a procedure

similar to that used in SPT, i.e., matching eq 25 with eq 1 as
follows

R R( 0) ( 0)s s sβμ β= = Φ = (26)

R R( 0) ( 0)s s sβμ β′ = = Φ′ = (27)

R R( 0) ( 0)s s sβμ β″ = = Φ″ = (28)

R R( 0 ) ( 0 )s s sβμ β= = Φ‴ =‴ + +
(29)

By including the third-order curvature term, we have an
additional parameter, ϕ−1, to determine. For this, we resort to
an additional condition given in eq 29 for the third derivative
of μs(Rs). Since this derivative has a discontinuity at Rs = 0, the
matching is made at Rs = 0+.
From this matching, we obtain
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For the constant term and the coefficient of the linear term,
i.e., ϕ0 and ϕ1, respectively, we obtain the same results as SPT
since the added term, h3(Rs), does not couple with these terms.
From eqs 25 and 30−32, we obtain the following expression
for the chemical potential
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Substituting eq 33 into eq 34 leads to an equation involving
chemical potential (μ) and pressure (P). With the help of the
Gibbs−Duhem equation, one can eliminate either μ or P and
obtain a first-order differential equation for P or μ. Because the
obtained differential equation has nonconstant coefficients, it is
not possible to solve it analytically. Nevertheless, this difficulty
can be circumvented by an iterative procedure to obtain
successively analytic results for chemical potential and
pressure. One can start the iteration by substituting the SPT

result for the pressure (given in eq 19) into the right-hand side
(RHS) of eq 33 and obtain
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Substituting eqs 19 and 35 into the RHS of eq 34 yields the
following result of the first iteration and we name it ASPT1
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where
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Using then the result for chemical potential given in eq 36 in
the Gibbs−Duhem equation and integrating the latter, we
obtain the following ASPT1 result for pressure
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The dimensionless surface tension near a spherical hard wall is
given by
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where
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In the results given above, there remains a parameter, i.e., δ, to
be determined. We will propose, in Section 3.1, a recipe for
determining δ and discuss, in more detail, the numerical
accuracy of ASPT1. The third-order curvature term introduced
into ASPT1 modifies the results for chemical potential,
pressure, and planar surface tension, compared to SPT, but
gives the same results as SPT for the bending rigidities related
to mean and Gauss curvatures, i.e., γ̃−1

ASPT1 and γ̃−2
ASPT1.
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2.2.2. Double-Point Matching Formulation. ASPT1
presented above is not an entirely self-contained theory in
the sense that it contains one adjustable parameter, i.e., δ. In
the following, we will show that it is also possible to develop an
augmented scaled particle theory without any adjustable
parameter. To circumvent the difficulty due to the divergence
of the third-order curvature term, Rs

−1, at Rs = 0, we propose to
extrapolate the exact result for a small-scaled particle, i.e., eq 1,
to a thermodynamics expression for a large-scaled particle in
two steps instead of the one used for SPT or ASPT1. The first
extrapolation is carried out for a scaled particle with a radius in
the region of 0 ≤ Rs ≤ d = (2/ 3 − 1)R (note that R + d is the
radius of a sphere, which can contain at most three hard
spheres of radius R). We propose the following expression for
the chemical potential of the scaled particle with a radius in
this region
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Since the diverging term, Rs
−1, is not included in eq 44, there is

no singularity at Rs = 0, and we can make the matching of eqs 1
and 44 without any problem, i.e.

R U R( 0) ( 0)s s sβμ β= = = (45)

R U R( 0) ( 0)s s sβμ β′ = = ′ = (46)

R U R( 0) ( 0)s s sβμ β″ = = ″ = (47)

R U R( 0 ) ( 0 )s s sβμ β″ = = ‴ =′ + +
(48)

From this matching, we obtain
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where
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and g(2R+) is the contact radial distribution function, and the
Virial equation for the pressure of a HS fluid was used when
going to the last equality in eq 53. It is to be noted that eqs 52
and 53 yield immediately an expression for P1, which is a first
estimation for the pressure, i.e.
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At this stage, the above equation of state can be considered as
the result of a new variant of scaled particle theory. Since an
additional condition, i.e., eq 48, is used, one does not resort to
Gibbs−Duhem equation in this first matching. It is to be
emphasized that P1 is not the final result for pressure, and we
will use eq 44 and the coefficients given in eqs 49−51 and 54
as the results of a first extrapolation of the chemical potential
to insert a larger scaled particle with a radius in the region of 0
≤ Rs ≤ d = (2/ 3 − 1)R.
For a scaled particle with a radius larger than d, we use the

following expression for its chemical potential including the
third-order curvature term
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The coefficients in eq 55 (wn, n = −1, 0, 1, 2) are determined
by matching eqs 44 and 55 at Rs = d, i.e.

W R d U R d( ) ( )s sβ β= = = (56)
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We obtain then
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Now, we find readily the following result for chemical potential
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(64)

Taking derivative with respect to density on both sides of eq
64 and using Gibbs−Duhem equation, i.e., eq 18, allow for
obtaining a first-order differential equation either for the
chemical potential or for the pressure. Again, the resulting
differential equation does not have constant coefficients and
this prevents us from solving it analytically. By adopting the
same iterative procedure as for ASPT1 (i.e., using the SPT
value for pressure on the RHS of eq 64), we obtain the
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following results (named ASPT2) for chemical potential and
pressure after the first iteration
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where

A
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(67)

From eq 55, we obtain the following ASPT2 result for the
surface tension (dimensionless one) of a HS fluid on a
spherical hard wall
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where
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It is to be pointed out that the double matching procedure
used above for obtaining ASPT2 is in the same spirit as the
method of multiple interpolation functions proposed by Corti
and co-workers. Nevertheless, we choose, as for ASPT1, the
dividing surface for defining the cavity at Rs rather than at Rs +
R in the previous work of Corti and co-workers.17,18

By considering the exact results of low order cluster
integrals, Urrutia proposed some empirical expressions for
the surface tension of a HS fluid on a planar hard wall, as well
as the two first bending rigidities on a spherical hard wall.43

The analytic results given explicitly in ref 43 are for a dividing
surface chosen at Rs + R. For the comparison with our results
to be discussed in the next section, we transform them to those
for a dividing surface chosen at Rs, i.e.
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(75)

In such a transformation, the expression for pressure is needed
and we used Carnahan−Starling equation as did Urrutia.

3. RESULTS AND DISCUSSION
3.1. Determination of the Adjustable Parameter in

ASPT1. Before ASPT1 can be used to obtain numerical results,
the parameter, δ, has to be determined first. An appealing
recipe for this is to adjust it in such a way that the pressure
given by eq 38 is as close as that of the Carnahan−Starling
equation, which has the following expression
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Since PSPT is different from PCS only at high fluid densities,
requiring PASPT1 = PCS at a high fluid density (with η = 0.5
being chosen here) should allow for obtaining accurate values
of pressure from ASPT1. This leads to the following equation
for determining δ

R R
1

1 e
/

1
4(3 ln 2 1)

R/ 3
δ

δ
− − =

−

δ−
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (77)

From eqs 37 and 38, we see that any positive root of eq 77 can
decrease the pressure given by SPT so that PASPT1 becomes
closer to PCS, thus improving the results of SPT. Solving eq 77,
we find only one positive root, i.e., δ/R = 0.234499. With this
parameter being adjusted at a single density point, the curve
given by ASPT1 (see Figure 1) overlaps that of the Carnahan−
Starling equation perfectly over the whole density region. This
indicates that our assumption that δ is independent of density
is a quite plausible one. Alternatively, if we require PASPT1 =
PASPT2 at η = 0.5, we obtain the following equation for δ
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From this equation, we find δ/R = 0.181952. The two values
for δ give quite close results for pressure (see Figure 1), and in
the following discussions, we will use δ/R = 0.234499 for
ASPT1.
3.2. Virial Coefficients for Pressure and Surface

Tension. For a HS fluid, the exact and analytical results for
the first four Virial coefficients of pressure are known, and
Monte Carlo simulation results are available for higher-order
Virial coefficients up to the tenth.47 Comparison of the Virial
coefficients given by an approximate theory to the exact ones
provides an appraisal for the accuracy of the approximate
theory. The Virial expansion of pressure describes the
deviation from the equation of state for an ideal gas at low
densities, i.e.
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where Bi is the ith Virial coefficient. It is well known that SPT
gives the exact results for the second and third Virial
coefficients but approximately for higher ones. From eqs 38
and 66, one can show straightforwardly that both ASPT1 and
ASPT2 give the exact second and third Virial coefficients as
SPT but correct the SPT results for higher-order coefficients.
The Virial coefficients, up to the tenth, given by ASPT1 and
ASPT2 are presented in Table 1 along with the exact results
and those given by SPT and the Carnahan−Starling equation
(CS). Some previous efforts have been made to develop SPT
type approaches by using the Carnahan−Starling equation as
input, e.g., CS−SPTM by Siderius and Corti17 and modified
fundamental measure theory (MFMT) by Hansen-Goos and
Roth.48 By construction, such approaches give the same Virial
coefficients for pressure as the Carnahan−Starling equation.
So, we will not show them in Table 1 in addition to those given
by the CS equation.
The standard deviation provides a measure for the overall

accuracy, i.e.
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From the results in Table 1, we find that ΔSPT = 10.48%,
ΔASPT1 = 4.393%, ΔASPT2 = 1.254%, and ΔCS = 0.8528%.
ASPT1 reduces by half the standard deviation compared to
SPT. The results in Table 1 show clearly that the accuracy of
ASPT1 deteriorates for high-order Virial coefficients (from B8).
The overall accuracy of ASPT2 is excellent and very close to
that of the Carnahan−Starling equation.
The Virial coefficients for γ̃0 given by ASPT1 and ASPT2 are

presented in Table 2 along with the exact results and those

from some other theories. ASPT1 and ASPT2 give both the
exact second and third Virial coefficients for this quantity, and
their respective errors for the fourth Virial coefficient are
6.346% and 3.823%, while SPT and MFMT48 have,
respectively, an error of 10.67% and −4.703% for this quantity.
It is to be noted that CS−SPTM of Siderius and Corti17 gives
an excellent result for the fourth Virial coefficient of γ̃0 with an
error of 0.0996% only. By construction, the empirical formulas
for surface tension proposed by Urrutia, i.e., eqs 73−75 give
the exact Virial coefficients up to the fourth order, which are
not reproduced either in Table 2 or in Tables 3 and 4.

Figure 1. Pressure of a hard sphere fluid given by ASPT1 compared
to the result given by the Carnahan−Starling equation46 (open
squares): (1) red line for the adjustable parameter, δ/R = 0.234499
(see Section 3.1); (2) blue line for the adjustable parameter δ/R =
0.181952 (see Section 3.1).

Table 1. Virial Coefficients for the Pressure of a Hard
Sphere Fluid

n exact47 SPT CS ASPT1 ASPT2

2 4 4 4 4 4
3 10 10 10 10 10
4 18.3647 19 18 18.6526 18.5595
5 28.2245(10) 31 28 29.3325 29.1675
6 39.81545(15) 46 40 41.368 41.5656
7 53.3418(15) 64 54 54.0742 55.631
8 68.534(88) 85 70 66.7614 71.3043
9 85.805(58) 109 88 78.7375 88.5556
10 105.8(4) 136 108 89.3093 107.369

Table 2. Virial Coefficients for the Surface Tension of a HS
Fluid on a Plane Hard Wall γ̃0

n exact43,44 SPT MFMT48 CS−SPTM
17 ASPT1 ASPT2

2 3 3 3 3 3 3
3 7.5 7.5 7.5 7.5 7.5 7.5
4 10.8429 12 10.333 10.8537 11.531 11.2574

Table 3. Virial Coefficients for Mean-Curvature Bending
Rigidity, γ̃−1

n exact43,44 SPT MFMT48 CS−SPTM
17 ASPT1 ASPT2

2 3 3 3 3 3 3
3 3 3 3 3 3 3
4 3.47682 3 3.333 0.90253 3 3.17231

Table 4. Virial Coefficients for Gauss-Curvature Bending
Rigidity, γ̃−2

n exact43,44 SPT MFMT48 CS−SPTM
17 ASPT1 ASPT2

2 1 1 1 1 1 1
3 0.5 0.5 0.5 0.5 0.5 0.5
4 0.03872 0.3333 0.3333 6.76477 0.3333 0.31556
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The Virial coefficients for γ̃−1 given by ASPT1 and ASPT2
are presented in Table 3 along with the exact results and those
from some other theories. ASPT1 and ASPT2 give both the
exact second and third Virial coefficients for this quantity and
their respective errors for the fourth Virial coefficient are
−13.71% and −8.758%, while SPT and MFMT have,
respectively, an error of −13.71% and −4.137% for this
quantity. It is quite striking that CS−SPTM largely under-
estimates the fourth Virial coefficient of γ̃−1 and gives a result
even worse than the original SPT.
The Virial coefficients for γ̃−2 given by ASPT1 and ASPT2

are presented in Table 4 along with the exact results and those
from some other theories. Although all of the theories give the
exact second and third Virial coefficients for this quantity, they
all overestimate this quantity by about 1 order of magnitude
except CS−SPTM, which overestimates the fourth Virial
coefficient of γ̃−2 by more than 2 orders of magnitude. Our
ASPT2 gives a slightly better result than the other theories.
The Virial coefficients for the third-order bending rigidity

are presented in Table 5. The exact calculations show that the
second and the third Virial coefficients for this quantity vanish
identically. Both ASPT1 and ASPT2 as well as CS−SPTM and
the extended fundamental measure theory (EFMT) proposed
by Hansen-Goos give exactly the same starting density
dependence, i.e., like ρ3. ASPT1 and ASPT2 underestimate
largely the amplitude of the fourth Virial coefficient although
the sign is correct. EFMT gives a better but also under-
estimated value for this quantity. However, CS−SPTM gives a
qualitatively incorrect result for the fourth Virial coefficient of
γ̃−3 with a wrong sign.
Before closing this subsection, it is useful to make a point

relating to the question of whether including some high-order
curvature terms necessarily improves SPT. From the above
discussions, the answer to this question is clearly negative.
CS−SPTM takes into account several high-order curvature
terms (more than in our ASPT1 or ASPT2). By construction,
CS−SPTM gives the same results for the bulk thermodynamic
properties as the Carnahan−Starling equation. Moreover, its
result for the surface tension at a planar wall is excellent.
However, its results for the bending rigidities related to mean
and Gauss curvatures are even worse than the original SPT.
The prediction of CS−SPTM for the fourth Virial coefficient of
γ̃−3 has even a wrong sign. Now, it is clear that including
higher-order curvature terms does not guarantee to obtain a
well-balanced new approach that gives an overall improvement
with respect to the original SPT.
3.3. Bulk and Surface Thermodynamic Properties at

High Densities. In this subsection, we will present the results
of ASPT1 and ASPT2 and appraise their accuracy over the
whole region of fluid density. Figure 2 shows that for the
pressure, both ASPT1 and ASPT2 give results in excellent
agreement with those of Monte Carlo simulation.
It is to be emphasized that our ASPT1 and ASPT2 improve

not only the bulk thermodynamic properties of a hard sphere
fluid but also its surface tension. For the surface tension of a
hard sphere fluid on a plane hard wall, ASPT1 and ASPT2

improve significantly the results of SPT, in particular in the
high-density region (see Figure 3). The empirical formula

proposed by Urrutia, i.e., eq 73, is currently the most accurate
one for the surface tension of a HS fluid on a planar hard wall
and our ASPT2 has the same accuracy as it (see Figure 3b).
From Figure 3b, we see Urrutia’s formula, and our ASPT1 and
ASPT2 give results accurate to 2%. We believe that the unusual
errors at low fluid densities (η < 0.1) are due to the numerical
errors of the simulation results for small quantities.
As we pointed out in Section 2.2.1, ASPT1, by construction,

gives the same results for the two bending rigidities, i.e., γ−1
and γ−2, as SPT. In Figure 4, the results of ASPT2 for γ−1 are
compared to the simulation ones, Urrutia’s empirical formula,
eq 74, and those of SPT. ASPT2 underestimates slightly γ−1 at
high densities but still gives quite accurate results compared to
molecular dynamics simulation and improves SPT results.
Urrutia’s formula gives accurate results up to η = 0.4 but shows
an inflection at a higher density and passes even below the SPT
curve (see Figure 4a).
ASPT2 overestimates γ−2, in particular, in the region of high

density (see Figure 5) but still slightly improves SPT results.
Urrutia’s empirical formula for this quantity, eq 75, gives very
accurate results. Finally, the results for the third-order-
curvature bending rigidity are presented in Figure 6. The
simulation results of Laird et al.41 show a quite complicated
variation of this term with the fluid density: positive at low

Table 5. Virial Coefficients for Third-Order-Curvature Bending Rigidity, γ̃−3

n exact43,44 EFMT44 CS−SPTM
17 ASPT1 ASPT2

2 0 0 0 0 0
3 0 0 0 0 0
4 2.481 × 10−1 9.842 × 10−2 −9.042 6.048 × 10−3 6.873 × 10−4

Figure 2. Pressure of a hard sphere fluid. ASPT1: black line; ASPT2:
red line; Monte Carlo simulation:15 black square; SPT: blue line.

Figure 3. (a) Surface tension of a hard sphere fluid on a plane hard
wall. Molecular dynamics simulation:42 black squares; Urrutia’s
formula:43 purple line; ASPT1: black line; ASPT2: red line; SPT:
blue line. (b) Corresponding relative errors of different theories with
respect to MD results.
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densities, negative in the intermediate region of density, and
again positive at high densities. Our ASPT1 and ASPT2 both
give a monotonous increase of this quantity with the fluid
density and ASPT2 gives a much smaller contribution of this
bending rigidity than ASPT1. We have seen that the fourth
Virial coefficient given by ASPT2 is smaller than that of ASPT1
by 1 order of magnitude. The EFMT proposed by Hansen-
Goos describes this complicated variation very well (see Figure
6). The two additional scaled-particle variables used by
Hansen-Goos make it impossible to solve analytically the
EFMT equation. It is to be noted that the definition of such
variables is not unique. We tried some possible choices but
they do not allow for solving analytically the extended FMT
either. The analytical expression for the third-order-curvature
bending rigidity, proposed by Hansen-Goos, is an ad hoc one
obtained by using Urrutia’s empirical formula for surface
tension of a HS fluid on a planar hard wall as input. So, EFMT

is not a self-containing theory. Because of its small amplitude,
the determination of γ−3 by simulation is extremely difficult
and tainted with large computational errors (see Figure 6). It is
to be noted that the locus of the upper ends of the error bars
for the simulation data never goes to the negative side.
Moreover, all of the other terms of the surface tension for a HS
fluid on a hard spherical wall are positive and monotonously
increasing with fluid density. We believe that more accurate
simulation data for the third-order-curvature bending rigidity
are needed. This issue deserves also further theoretical
investigations, in line with the call made by Hansen-Goos,44

for further theoretical studies to determine the points at which
γ−3 changes its sign.

4. CONCLUSIONS
Two approaches are proposed for augmenting the expression
of the cavity-forming work in SPT by only one non-Hadwiger
term, i.e., the third-order curvature. This strategy is simpler
than the previous similar approaches. Since only one additional
term is introduced, four exact conditions are enough to match
the augmented expression of the cavity-forming work for a
large cavity to the exact results of this work for small cavities.
We believe that the success of our simple strategy is due to the
choice of the dividing surface for defining the cavity at the
surface of the scaled particle instead of the surface of the
excluding sphere of the centers of the hard spheres around the
scaled particle. The difficulty with this choice of dividing
surface is that it prevents a straightforward matching procedure
because of a divergence problem. We proposed two methods
to circumvent this difficulty, one for a single matching
formulation and the other for a double matching procedure.
The thus obtained new approaches named ASPT1 and ASPT2
are totally analytical. Both of them give excellent results for
bulk thermodynamic properties of a HS fluid, with the
accuracy equivalent to that of the Carnahan−Starling equation.
Moreover, both ASPT1 and ASPT2 give very accurate results
for the surface tension of a HS fluid on a plane hard wall over
the whole fluid density region, in particular, ASPT2 has the
same accuracy as the empirical formula proposed by Urrutia,
which is currently the most accurate one for this quantity. By
construction, ASPT1 does not improve the contributions from
the mean and Gauss curvatures with respect to SPT. It is really
remarkable that ASPT2 improves all of the curvature terms to
the surface tension, compared to SPT. Its simplicity and good
accuracy for both bulk and surface thermodynamic properties
make ASPT2 a very attractive theory for studying complex
inhomogeneous fluids, e.g., those confined in complex porous
media. ASPT2 gives a monotonously increasing third-order-
curvature bending rigidity as a function of fluid density while
simulation results show apparently a more complicated
variation of this quantity with the fluid density. Further
simulations with better numerical accuracy and theoretical
investigations on the sign of this quantity are needed.
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