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a b s t r a c t

Navier-Stokes equations are widely applied to deal with non-equilibrium fluid dynamics such as the flow
field on nanoscale. On the other category, dynamical density functional theory (DDFT) has recently been
recognized as a robust tool to investigate the non-equilibrium processes such as molecular diffusion and
adsorption dynamics. Both approaches have achieved great success and it’s natural to wonder if there is
any intrinsic relation inbetween. Herein, we prove that DDFT can be derived from the general Navier-
Stokes equations with approximate evaluation of pressure tensor. Motivated by this procedure, we intro-
duce the flow effect on pressure tensor, and then propose extensions of DDFT for addressing the coupling
between dynamic adsorption and fluid flow. This work, revealing the relation between DDFT and Navier-
Stokes equations, not only casts novel insights into the extension of DDFT, but also highlights a potential
route to overcome the Navier-Stokes analytic solution problem.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Most chemical engineering processes are in non-equilibrium
involving molecular diffusion and mass transport (Wang et al.,
2014; Krishna, 2012). To describe the dynamic characteristics of
these processes, quite a few theoretical approaches have been
developed. Among them, the Fick mass transport equation pro-
vides a traditional method for describing mass transport (Liu
et al., 2012; Andreucci et al., 2019), and the basic idea lying in it
is that the concentration gradient gives the driving force and drives
the evolution of local concentration. In practical applications, the
diffusion coefficients need to be determined in prior under most
conditions, while the diffusion coefficients, often measured exper-
imentally, do not reflect their dependence on local position
(Kozlova et al., 2019; Chacón-Acosta et al., 2020). Such a depen-
dence becomes key important when dealing molecular diffusion
in nanopores (Liu et al., 2013a; Stopper et al., 2015). Another
well-known approach is the Navier-Stokes equations, which estab-
lish the relations among the acceleration of fluid particle momen-
tum, the exchange of liquid inside pressure, the dissipative viscous
force and the gravity force. Navier-Stokes equations have been
widely applied in engineering field to investigate non-
equilibrium fluid dynamics (Łukaszewicz and Kalita, 2016). Due
to the broad applications of Navier-Stokes equations, many physi-
cists and even mathematicians have further investigated the com-
pressible and incompressible Navier-Stokes equations and
obtained a number of achievements (Bassi and Rebay, 1997; Xin,
1998; Kennedy et al., 2000; Brooks and Hughes, 1982; Ghia et al.,
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1982; Bell et al., 1989). From a mathematical perspective, the
Navier-Stokes equations represent a set of partial differential equa-
tions, and its analytical solution can be hardly figured out due to its
high non-linearity (Wolfram, 2002). Towards this end, various
types of computational methods are proposed and developed. In
addition, the simplifications of Navier-Stokes equations in specific
circumstances are also reported for the convenience of calculation
(Łukaszewicz and Kalita, 2016).

On the other category, the molecular diffusion equations, start-
ing from molecular interaction, do not depend on the empirical
mass transport parameters. In this regard, several theories have
been developed, including non-equilibrium molecular dynamics
(Tao et al., 2018), and kinetic Monte Carlo Simulation (Acharya
et al., 2017; Chang et al., 2018). However, if one wants to obtain
the macroscopic thermodynamic properties such as free energy
and entropy, the detailed microscopic information of every mole-
cule is needed in order to perform the ensemble average of observ-
ables at each time moment. Overall, the computation cost of this
procedure is expensive. Besides, the time scale and length scale
for the systems handled by the above theories are far too small
compared with the real chemical systems. Hence, more advanced
methods that can handle larger non-equilibrium systems and
describe the local diffusion under different external fields are
necessitated.

As one of the advanced liquid state theories, density func-
tional theory (DFT) has recently been recognized as a robust tool
to study the thermodynamic properties by predicting local den-
sity distributions of inhomogeneous liquids at equilibrium (Wu
and Li, 2007; Hansen and McDonald, 2013), and it has been suc-
cessfully applied to investigate solvation (Liu et al., 2011; Liu
et al., 2013b; Zhao et al., 2011), adsorption (Schumacher et al.,
2000; Liu et al., 2009; Ravikovitch et al., 2000), wetting
(Meister and Kroll, 1985; Zeng et al., 2011), and freezing
(Singh, 1991). Moreover, DFT has been extended to non-
equilibrium systems, which is known as the dynamical density
functional theory (DDFT). Till date, there have been a few formu-
lation works on DDFT, providing important foundation for the
engineering applications in the fields of green energy and novel
materials (Qing et al., 2020; Qing et al., 2019; Liu, 2016). The
first derivation of DDFT has been reported in the late 1990s
when Marconi (Marconi and Tarazona, 1999) et al. presented a
time-dependent density functional approach to study the relax-
ational dynamics interacting fluids subject to thermal noise.
Afterwards, several modifications have been proposed by Mar-
coni and his co-workers (Marconi and Tarazona, 2000; Marini
Bettolo Marconi and Tarazona, 2006). Marconi et al. started from
the Langevin stochastic equations and formulated a DDFT. In
2004, Archer and Evans (Archer and Evans, 2004) gave another
derivation of DDFT, and they started from the Smoluchowski
equation and employed near-equilibrium assumptions. Such a
derivation elucidates the physical assumptions inherent in Mar-
coni’s work (Marconi and Tarazona, 1999). More recently,
Español and Löwen (2009) derived a general version of DDFT
for complex fluids which involves a generalized diffusion tensor.
This approach assumes that the density evolves in time much
slower than the current correlation function and it is in particu-
lar appropriate if there exist simultaneously fast and slow evolu-
tions of observables.

Both DDFT and Navier-Stokes equations are versatile methods
for dynamical processes in chemical engineering (Padmanabhan,
2011; Hansen et al., 2013), but the relation between them is not
clear yet. In this work, we show that DDFT can be derived
from the general Navier-Stokes equations. Our derivation, starting
from the momentum balance equation of Navier-Stokes
equations, involves a generalized pressure tensor as a kernel. By
2

approximating the pressure tensor in different ways, we show that
various versions of DDFT can be obtained.

The remainder of this work is laid out as follows: the classical
DFT is recapitulated in the next section together with DDFT. After-
wards, a brief introduction of the Navier-Stokes equations is given
in Section 3. The new derivation of DDFT from the Navier-Stokes
equations is presented in Section 4. The extension of DDFT for
addressing the coupling between dynamic adsorption and fluid
flow is proposed in Section 5. Finally, a brief conclusion is given
in Section 6.

2. Classical density functional theory

For interacting fluid subject to an external potential, there
exists only one unique local density distribution, qðrÞ, and then
the thermodynamic properties of this system can be determined
by qðrÞ. This is the key idea in the Hohenberg-Kohn theorem
(Hohenberg and Kohn, 1964; Evans, 1979). The major challenge
in the practical application of DFT lies in the construction of the
intrinsic Helmholtz free energy functional in term of local density,
i.e., Fint ½qðrÞ�. Within the grand canonical ensemble, the grand
potential and the intrinsic free energy are related through:

X½qðrÞ� ¼ Fint½qðrÞ� þ
Z

dr½qðrÞðVextðrÞ � lÞ�; ð1Þ

where VextðrÞ is the external potential and l is the chemical poten-
tial of system component. In general, the intrinsic Helmholtz free
energy includes an ideal-gas contribution and an excess one due
to intermolecular interaction:

Fint½qðrÞ� ¼ F id½qðrÞ� þ Fex½qðrÞ�: ð2Þ
The ideal-gas contribution for inhomogeneous fluids can be for-

mulated exactly as:

bF id q rð Þ½ � ¼
Z

drq rð Þ lnðq rð ÞK3Þ � 1
h i

; ð3Þ

where K is the thermal wavelength, b ¼ 1=kBT with kB the Boltz-
mann constant, and T is the absolute temperature.

For the system free of Coulombic interaction, the excess contri-
bution can be generally divided into two terms, i.e., the one
accounting for short-range repulsion and the one for perturbative
attraction:

Fex½q rð Þ� ¼ Fex
rep½q rð Þ� þ Fex

att½q rð Þ�: ð4Þ
Both the repulsion term and attraction term can’t be formulated

exactly, and to tackle this problem, various approximate function-
als have been developed. A feasible approach to address the repul-
sion contribution is the fundamental measure theory (FMT)
originally developed by Rosenfeld (1989) and extended by several
groups (Yu and Wu, 2002a,b). As for the attraction contribution,
the first-order mean spherical approximation (FMSA) by Tang
(2004) gives a convenient yet accurate solution, especially for the
Lennard-Jones (LJ) systems. When the long-range Coulombic inter-
action is involved, additional contribution should be properly
introduced (Zhao et al., 2011). The intrinsic Helmholtz free energy
is related with the Helmholtz free energy through:

F½qðrÞ� ¼ Fint ½qðrÞ� þ
Z

drqðrÞVextðrÞ: ð5Þ

At thermodynamic equilibrium, the density profile, qðrÞ, can be
determined by minimizing the Helmholtz free energy or grand
potential functional:

dX½qðrÞ�
dqðrÞ ¼ dF½qðrÞ�

dqðrÞ � l ¼ 0: ð6Þ
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The minimization gives the following Euler-Lagrange equation
(Zhao et al., 2015):

q rð Þ ¼ qbexp blex
b � b

dFex½q rð Þ�
dq rð Þ � bVext rð Þ

� �
; ð7Þ

where qb and lex
b are the number density and excess chemical

potential of the corresponding bulk fluid, and
dFex½q rð Þ�=dq rð Þ ¼ lex rð Þ gives the local excess chemical potential.

The static density functional theory has been extended to non-
equilibrium systems (Archer and Evans, 2004; Español and Löwen,
2009). The most prominent difference between DFT and DDFT is
that DDFT redefines the density profile with a time limitation term
t, which means the time evolution of local density profile, qðr; tÞ, is
associated with the time-dependent free energy functional. Cur-
rently, there are mainly three versions of DDFT for describing the
temporal and spatial evolution of local density.

Starting from the Brownian dynamics equation, Marconi et al.
used Langevin stochastic equations to derive a DDFT equation as
follows (Marconi and Tarazona, 1999; Marconi and Tarazona,
2000) :

@qðr; tÞ
@t

¼ 1
cm

rr � qðr; tÞrr
dF½qðr; tÞ�
dqðr; tÞ

� �
; ð8Þ

where c is the friction coefficient. In above equation, Marconi et al.
assumed that the two-body correlations decay much faster to equi-
librium than the one-body density, in other words, the above equa-
tion is therefore applicable for over-damped systems. This equation
has been applied later to investigate solvation dynamics
(Yoshimori, 2004) and crystal growth (Van Teeffelen et al., 2009).
Archer and Evans used the Smoluchowski equation to derive the
dynamic equation as follows (Archer and Evans, 2004; Archer,
2009) :

@2

@t2
qðr; tÞ þ c

@

@t
qðr; tÞ ¼ 1

m
rr � ½qðr; tÞrr

dF½qðr; tÞ�
dqðr; tÞ �: ð9Þ

Compared to Marconi’s version, the second derivation of local
density with respect to time is present. During this derivation it’s
easy to involve the many-body interactions among particles into
consideration. The above equation has been employed to study
the dynamics of fluid phase separation (Archer, 2005). It should
be noted that the same DDFT equation was also derived from the
Newton’s equation of motion (Archer, 2006).

Recently, Español and Löwen (2009) derived the density evolu-
tion equation from the Liouville equation with the help of projec-
tion operator technique:

@

@t
qðr; tÞ ¼ rr

Z
dr0Dðr; r0; tÞrr0

dF½qðr; tÞ�
dqðr; tÞ ; ð10Þ

where D r; r0; tð Þ represents the diffusion tensor given by Green-
Kubo relation. They showed that by using different approximations
to treat the diffusion tensor, the two previous DDFT equations can
be recovered. Therefore, the above equation can be seen as a general
version of DDFT equation.

3. Navier-Stokes equations

Starting from Newton’s constitutive equation, Navier and
Stokes gave the set of Navier-Stokes equations, reading:

@

@t
ðqvÞ þ rr � ðqv � vÞ ¼ Q þ C

m
; ð11Þ

where � represents the dyadic product of two vectors, v is the
velocity of the fluid, v � vis a special case of the tensor product,
Q represents the sources and sinks in the fluid, and C is the total
force. For classical fluid in which no chemical reaction is involved,
3

the sources and sinks term vanishes, i.e., Q = 0. Expanding the
derivatives completely we have:

v
@q
@t

þ q
@v
@t

þ v � v � rrqþ qv � rrv þ qvrr � v ¼ C
m

: ð12Þ

Since v � v � rrq ¼ v v � rrqð Þ, Eq. (12) can be rewritten as:

v
@q
@t

þrr � ðqvÞ
� �

þ q
@v
@t

þ v � rrv
� �

¼ C
m

: ð13Þ

The leftmost term enclosed in parentheses is, by mass continu-
ity, equal to zero. Noting that what remains on the left side of the
equation is the convective derivative:

q
Dv
Dt

¼ C
m

; ð14Þ

where D
Dt � @

@t þ v � rr is the material derivative, which is a deriva-
tive taken along a path moving with velocity, v. Then we multiply
both sides of Eq. (14) by m, giving:

q
Dp
Dt

¼ C; ð15Þ

where p ¼ mv is the local momentum. The above equation repre-
sents a generalized expression of Newton’s second law in terms of
body forces instead of point forces (Łukaszewicz and Kalita, 2016).

4. From Navier-Stokes equations to DDFT

Now we specialize the above Navier-Stokes equations into the
material derivative. We add the position and time variable to Eq.
(15), yielding:

qðr; tÞDpðr; tÞ
Dt

¼ CðrÞ; ð16Þ

where Dpðr; tÞ=Dt is contributed by two terms: unsteady accelera-
tion and convective acceleration (Łukaszewicz and Kalita, 2016),
i.e.:

Dpðr; tÞ
Dt

¼ @pðr; tÞ
@t

þ 1
m

pðr; tÞ � rrpðr; tÞ: ð17Þ

For colloidal systems, the body force, CðrÞ, contains three con-
tributions: viscosity, pressure gradient and external force
(Łukaszewicz and Kalita, 2016):

CðrÞ ¼ �cqðr; tÞpðr; tÞ � rr � P̂þ qðr; tÞfexðrÞ; ð18Þ
where fexðrÞ � �rrVextðrÞ is the one-body external force. Substitut-
ing Eqs. (17) and (18) back into eq.(16), giving:

qðr; tÞ @pðr; tÞ
@t

þ 1
m
qðr; tÞpðr; tÞ � rrpðr; tÞ

¼ �cqðr; tÞpðr; tÞ � rr � P̂þ qðr; tÞfexðrÞ: ð19Þ
Eq. (19) is known as the equation of local momentum balance.

Note that rr � P̂ represents the derivative of local pressure tensor.

The pressure tensor, P̂, can be decomposed into two parts: the

kinetic part P̂
ðKÞ

and the potential part P̂
ðVÞ

:

P̂ ¼ P̂
ðKÞ þ P̂

ðVÞ
: ð20Þ

The potential part of the pressure tensor originates from the
molecular interaction, and it’s related with the two-body density
distribution (Keizer, 2012):

rr � P̂
ðVÞðr; tÞ ¼ �

Z
f1;2ðr1; r2Þqðr1; r2; tÞdr2; ð21Þ

where f1;2 � �rr � Cðr1; r2Þ denotes the force acting on particle 1
from particle 2 as Cðr1; r2Þ being the interaction potential
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in-between. qðr1; r2; tÞ is the time-dependent two-body density dis-

tribution. One can interpret rr � P̂
ðVÞðr; tÞ as the time-dependent

mean interaction force at position r. The kinetic part of the pressure
tensor is defined as:

P̂
ðKÞðr; tÞ ¼ R dp ½p�pðr;tÞ��½p�pðr;tÞ�

m f ð1Þðr;p; tÞ
¼ R dp p�p

m f ð1Þðr;p; tÞ � qðr;tÞ
m pðr; tÞ � pðr; tÞ;

ð22Þ

where f ð1Þðr;p; tÞ is the one-body probability function (Zhao and

Wu, 2011). The kinetic pressure tensor P̂
ðKÞ

originates from the

molecular collision, and rr � P̂
ðKÞðrÞ represents the entropic force

due to the variation of local colloidal density.
Then we apply the following identity:

qðr; tÞ
m

pðr; tÞ � rrpðr; tÞ � rr � ½qðr; tÞm
pðr; tÞ � pðr; tÞ�

¼ �pðr; tÞrr � ½qðr; tÞm
pðr; tÞ�; ð23Þ

and meanwhile note that jðr; tÞ ¼ 1
mqðr; tÞpðr; tÞ denotes the particle

flux and the continuity equation reads (Zhao and Wu, 2011):

@

@t
qðr; tÞ ¼ �rr � jðr; tÞ; ð24Þ

and then we rewrite Eq. (19) as:

@jðr; tÞ
@t

þ cjðr; tÞ ¼ �rr �
Z

dp
p� p
m2 f ð1Þðr;p; tÞ þ 1

m

�
Z

f1;2ðr1; r2Þqðr1; r2; tÞdr2

þ qðr; tÞ
m

fexðrÞ: ð25Þ

So far, we have made no approximations, and the above equa-
tions are exact. It is at this stage in the derivation that we make
approximations to derive DDFT. First, we assume the system is in
near-equilibrium state, and the one-body probability function sat-
isfies the Maxwell-Boltzmann distribution:

f ð1Þðr;p; tÞ � f ð1ÞMBðr;p; tÞ ¼ qðr; tÞ b
2pm

� �3=2

exp �b
p2

2m

� �
: ð26Þ

With this assumption, the first term on the right hand side of
Eq. (25) can be evaluated as:R

dp p�p
m2 f 1ð Þ

MBðr;p; tÞ

¼ qðr;tÞ
m2

R
dp

pxpx pypx pzpx

pxpy pypy pzpy

pxpz pypz pzpz

0B@
1CA b

2pm

� �3=2
exp � bp2

2m

h i
;

¼ kBT
qðr;tÞ
m
b1

ð27Þ

where 1̂ is the three-dimension unit vector. Hence:

rr �
R
dp p�p

m f ð1Þðr;p; tÞ ¼ kBTrr � qðr;tÞm
b1

¼ kBT
m rrqðr; tÞ

¼ qðr;tÞ
m rr kBTlnqðr; tÞ½ �;

¼ qðr;tÞ
m rrlidðr; tÞ

ð28Þ

where lidðr; tÞ ¼ kBTln½qðr; tÞK3� is the ideal part of local chemical
potential.

Second, we assume that the two-body density distribution in a
non-equilibrium system is the same as in the corresponding equi-
librium fluid sharing the same one body density profile, i.e. we
apply the following sum rule, which is exact for equilibrium fluids
(Archer and Evans, 2004):
4

1
m

Z
f1;2ðr1; r2Þqðr1; r2; tÞdr2 ¼ kBT

qðr1Þ
m

rrcðr1; tÞ; ð29Þ

where cðr1; tÞ is the one-body direct correlation function.
The chemical potential determined by Eq. (6) within the frame-

work of DDFT contains three contributions:

dF½qðr; tÞ�
dqðr; tÞ ¼ lidðr; tÞ þ lexðr; tÞ þ Vextðr; tÞ: ð30Þ

We employ the familiar relation lexðr; tÞ ¼ �kBTcðr; tÞ, and com-
bine Eqs. (28)–(30), we can rewrite Eq. (25) as:

@jðr; tÞ
@t

þ cjðr; tÞ ¼ �qðr; tÞ
m

rr
dF½qðr; tÞ�
dqðr; tÞ : ð31Þ

Eq. (31) and Eq. (24) form a closed set of dynamical equations
for the local density, qðr; tÞ and the local flux, jðr; tÞ. As the density
functional, F½qðr; tÞ�, is approximated by that of the corresponding
equilibrium system, Eq. (31) is known as the DDFT.

If we apply divergence on both sides of Eq. (31) and then substi-
tute Eq. (24) into the resulting equation, we immediately recover
Archer’s formulation in Eq. (9). It’s worth noting at this point that
if we further assume the friction coefficient c is very large so that
the first term on the left hand side of Eq. (31) is negligible, Eq. (31)
recoveries to Eq. (8), which is the original DDFT by Marconi and
Tarazona (1999), Marconi and Tarazona (2000). For pure solvent
system, we have c ¼ 0, Eq. (31) reduces to (setting m ¼ 1):

@jðr; tÞ
@t

¼ �qðr; tÞrr
dF½qðr; tÞ�
dqðr; tÞ : ð32Þ

The above equation coupled with Eq. (24) recovers to the
dynamical equation proposed by Bagchi and his coworkers
(Burghardt and Bagchi, 2006; Bagchi and Chandra, 1991; Bagchi
and Bhattacharyya, 2001).

5. Extension of DDFT

The intrinsic relation between the Navier-Stokes equation and
DDFT discussed above casts helpful insights for further extending
the DDFT. Till date DDFT has been extensively employed to inves-
tigate molecular diffusion such as gas species in porous materials
and ionic diffusion in electrochemical systems during the
charge–discharge processes. In chemical engineering, molecular
diffusion is often coupled with fluid flow (Yu et al., 2017), and
the flow has non-neglectable effect on the diffusion dynamics
when the system size reduces to nanoscale. For example, Mao
and Sinnott (2000) utilized molecular dynamics simulations to
investigate the flow of methane, ethane, and ethylene through car-
bon nanotubes, they found that the fluid–fluid interaction and
fluid-wall interaction both had strong impact on molecule flow
and diffusion processes. Ding et al. (2019) fabricated a novel elec-
trochemical membrane reactor with a gas diffusion cathode for
H2O2 generation, they found that the oxygen flow and gas diffusion
near the catalytic layer have an enhancement on oxygen utilization
efficiency and H2O2 productivity. Nevertheless the coupling
between the fluid flow and molecular diffusion can’t be properly
addressed by the existing versions of DDFT.

Inspecting the derivation above, we notice that the approximate
evaluations of pressure tensor lead to different versions of DDFT.
Motivated by this treatment, we re-examine the calculation of
pressure tensor by additionally considering the flow effect, and
thus further extend DDFT for addressing the coupling between
the fluid flow and molecular diffusion.

For a fluid flow system with pðr; tÞ–0, we have derived the one-
body probability distribution with the help of maximum informa-
tion entropy principle in our previous work, and it reads (Zhao and
Wu, 2011):
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f ð1Þðr;p; tÞ ¼ qðr; tÞ b
2pm

� �3=2

exp �b
½p� pðr; tÞ�2

2m

 !
; ð33Þ

and hence after some algebra we have:Z
dp

p� p
m2 f ð1Þðr;p; tÞ ¼ kBT

qðr; tÞ
m

1̂þ qðr; tÞ
m2 pðr; tÞ � pðr; tÞ: ð34Þ

The divergence of above equation gives:

rr �
Z

dp
p� p
m2 f ð1Þðr;p; tÞ ¼ qðr; tÞ

m
rrlidðr; tÞ þ rr

� ½qðr; tÞ
m2 pðr; tÞ � pðr; tÞ�: ð35Þ

Substituting the above equation into Eq. (25), and meanwhile
applying the approximation in Eq. (29), we reach:

@jðr; tÞ
@t

þ cjðr; tÞ ¼ �qðr; tÞ
m

rr
dF½qðr; tÞ�
dqðr; tÞ þ rr � ½qðr; tÞm2 pðr; tÞ

� pðr; tÞ�: ð36Þ
Apparently, if we further assume pðr; tÞ � pðr; tÞ ¼ 0, the above

equation immediately recovers to Eq. (31), i.e., the DDFT equation
for pure diffusion process. The above equation with the combina-
tion of Eq. (24) gives a closed set of governing equations for
addressing the coupling between fluid flow and diffusion
dynamics.

Another extension of DDFT can be obtained if we take diver-
gence on the both sides of above equation and then substitute
the continuity equation, which reads:

@2qðr; tÞ
@t2

þ c
@qðr; tÞ

@t
¼ �rr � fqðr; tÞm

rr
dF½qðr; tÞ�
dqðr; tÞ g þrr

� frr � ½qðr; tÞuðr; tÞ � uðr; tÞ�g: ð37Þ

Similarly, if the diffusion coefficient c is large so that @2qðr;tÞ
@t2

is
ignorable, the above equation can be further simplified as:

@qðr; tÞ
@t

¼ �rr � fqðr; tÞcm
rr

dF½qðr; tÞ�
dqðr; tÞ g þrr � 1c frr

� ½qðr; tÞuðr; tÞ � uðr; tÞ�g: ð38Þ

Note that the above equation indicates that the evolution of
local density is composed of two parts, namely the molecular dif-
fusion (the first term on the right hand side) and the flow effect
(the second term on the right hand side). If we ignored the flow
effect, then Eq. (38) recovers to the original DDFT equation in Eq.
(10). Eq. (36), Eq. (37) and Eq. (38) represent three extended ver-
sions of DDFT, and they provide theoretical foundation for describ-
ing the molecular diffusion, e.g., adsorptive diffusion onto solids
surfaces, affected by fluid flow.

It should be noted that many chemical processes are in station-
ary states, in which the fluid density is irrelevant with time, i.e.,
@qðrÞ=@t ¼ 0. In this circumstance, Eq. (38) simplifies to:

0 ¼ �rr � qðrÞ
cm

rr
dF½qðrÞ�
dqðrÞ

� 	
þrr � 1c rr � ½qðrÞuðrÞ � uðrÞ�f g:

ð39Þ
By integrating both sides of the above equation, and considering

the mass conservation equation, we have:

qðrÞ
cm

rr
dF½qðrÞ�
dqðrÞ ¼ 1

c
rr � ½qðrÞuðrÞ � uðrÞ�f g; ð40Þ

which can be rewritten as:
5

rr
dF½qðrÞ�
dqðrÞ ¼ m

qðrÞ rr � ½qðrÞuðrÞ � uðrÞ�f g: ð41Þ

We assume this system is in contact with a bulk reservoir, and
then integrate above equation from position r to the bulk system,
we have:

dF½qðrÞ�
dqðrÞ � lbulk ¼

Z bulk

r

m
qðr0Þ rr � ½qðr0Þuðr0Þ � uðr0Þ�f gdr0; ð42Þ

where lbulk is the chemical potential of the fluid component in the
bulk system. The integral on the right hand side of above equation
can be considered as a driving potential originating from the hydro-
dynamic effect, which can be represented by an effective potential,
/f ðrÞ, satisfying:
qðrÞrr/f ðrÞ ¼ �mrr � ½qðrÞuðrÞ � uðrÞ�; ð43Þ
and then Eq. (42) can be rewritten as:

dF½qðrÞ�
dqðrÞ ¼ lbulk � /fðrÞ: ð44Þ

The above equation represents the governing equation for local
density profile in steady systems. By following the similar proce-
dure as in the static density functional theory, we can obtain the
generalized Euler-Lagrange equation from eq.(44), namely:

qðrÞ ¼ qbexp blex
bulk � b/f ðrÞ � bVextðrÞ � dbFex½qðrÞ�

dqðrÞ
� �

: ð45Þ

Under hydrostatic condition, one naturally has /f ðrÞ ¼ 0, and
then the above equation recovers to the standard Euler-Lagrange
equation (Hansen and McDonald, 2013; Zhao et al., 2015). It should
be noted that the standard Euler-Lagrange equation can be derived
from the existing three versions of DDFT, i.e., Eqs. (8), (9), and (10),
under equilibrium condition. The generalized Euler-Lagrange
equation beyond the standard one highlights the significant
improvement of our extended DDFT, and more importantly, the
generalized Euler-Lagrange equation indicates that the local den-
sity profile can be regulated not only by external potential but also
by fluid flow, and this interesting feature stimulates us with a
novel path to intensify and regulate relevant engineering processes
including interface reaction and mass separation.

6. Conclusion

In this work, we prove that DDFT, a molecular dynamical the-
ory, can be derived from the general Naiver-Stokes equations with
near-equilibrium assumptions. Our derivation, starting from the
momentum balance equation of Navier-Stokes equations, involves
a generalized pressure tensor as a kernel. By employing various
approximations to simplify the pressure tensor, various versions
of DDFT can be deduced. This derivation casts helpful insights into
the extension of DDFT. Stimulated by this procedure, we further
extend DDFT to the dynamics systems in which molecular diffu-
sions are closely coupled with fluid flow. To this end, we re-
evaluate the pressure tensor by additionally considering flow
effect. The extended DDFT provides a feasible approach to address
the flow effect on both molecular diffusion and local density
profile.

Finally, it’s worth noting that the developed methods of FMT
and FMSA within the framework of density functional theory can
be, respectively, regarded as individual semi-analytical solutions
to the free energy contributions from repulsive interaction and
the attractive interaction. This physical concept that the free
energy can be divided into two different contributions may provide
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a potential route to overcome the Navier-Stokes analytical solution
problem.
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