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ABSTRACT

Extremely large-scale networks have received increasing attention in recent years. The development of big data and network science provides
an unprecedented opportunity for research on these networks. However, it is difficult to perform analysis directly on numerous real networks
due to their large size. A solution is to sample a subnetwork instead for detailed research. Unfortunately, the properties of the subnetworks
could be substantially different from those of the original networks. In this context, a comprehensive understanding of the sampling methods
would be crucial for network-based big data analysis. In our work, we find that the sampling deviation is the collective effect of both the
network heterogeneity and the biases caused by the sampling methods themselves. Here, we study the widely used random node sampling
(RNS), breadth-first search, and a hybrid method that falls between these two. We empirically and analytically investigate the differences in
topological properties between the sampled network and the original network under these sampling methods. Empirically, the hybrid method
has the advantage of preserving structural properties in most cases, which suggests that this method performs better with no additional
information needed. However, not all the biases caused by sampling methods follow the same pattern. For instance, properties, such as link
density, are better preserved by RNS. Finally, models are constructed to explain the biases concerning the size of giant connected components
and link density analytically.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076854

In this paper, we discuss the biases that arise during network sam-
pling. Although there are many different sampling methods, we
discuss three of the most common ones: random node sampling
(RNS), breadth-first search (BFS), and the hybrid method. Over-
all, the sampling biases can be attributed to two causes: network
heterogeneity and the biases caused by sampling methods. We
mainly focus on the latter, as they are determined by the sam-
pling methods themselves, and these biases can be regarded as
systematic. Carrying out both empirical and analytical studies,
we find that these biases vary with different network indicators.
For the main contribution of this article, the systematic errors
on the size of giant connected components and link density are
discussed analytically using some models. These results can help
us better understand the information gathered via sampling from
large networks.

I. INTRODUCTION

A complex network is a model suitable for representing the
relationship between agents of complex systems.1,2 It has received

sustained attention because of its simplicity and universality in
terms of applications to systems, such as infrastructure systems,3–8

socioeconomic systems,9–11 and biological systems.12–14 In recent
years, the development of big data has established a solid founda-
tion for the accumulation and analysis of various complex networks
with the scales of networks becoming increasingly larger. On the
one hand, it is an opportunity for studies of complex systems, as
the accumulated data are sufficiently large to match the complex-
ity of the system. The tools of statistical physics can be applied at
this time as the scale of networks are sufficiently large to approach
the thermodynamic limit, and some properties such as scale-free15

become universal under this assumption. On the other hand, the
large scale of networks makes it difficult to perform analysis directly
on them. The solution is to sample a subnetwork from the origi-
nal network and study its properties instead. However, this is only
an approximate method since the differences concerning many
topological properties between the original network and the sam-
pled subnetwork have not yet been sufficiently understood.16

To be accurate, there are already some works that detect
the differences in topological properties between subnetworks
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obtained from the same real system17,18 or by doing some sampling
experiments.19–23 These works suggest that the information gathered
from networks will also be affected by the “noise” introduced by
sampling methods. In this context, the effects of network sampling
need to be studied to provide a comprehensive understanding of the
information gathered via these methods.

Some seminal works have already been done to discuss the
differences concerning some topological properties between the
subnetworks and the original networks with statistical methods or
empirical methods.

Among the work based on statistical methods, the earliest one
can be traced back to the 1980s.24 From the view of statistics, the
indicators of subnetworks can be regarded as an estimate of those in
the corresponding original networks. Therefore, statistical proper-
ties, such as bias, could be analyzed.20 However, only a few properties
can be studied in detail due to their analyzability. The most dis-
cussed indicators are degree25,26 or indicators based on degree.27 The
sampling method is usually restricted to methods based on random
samplings, such as random node sampling (RNS) or random link
sampling (RLS).20

However, methods based on random sampling are not the
only sampling methods applied, as the subnetworks sampled by
these methods may exhibit poor connectivity due to the sparsity of
real networks. Edge lists are usually used as the storage format of
most complex networks. Methods based on neighbor exploration
are usually more effective: start from a single node, explore its
neighbors, and repeat. One should note that all the methods we dis-
cuss here sample nodes without replacement. These methods are
also called traversal in some literature.28 The most representative
methods are breadth-first sampling (BFS) and depth-first sampling
(DFS).

Combining these two kinds of sampling methods, there is the
snowball sampling method,29 which can be regarded as the BFS
method with multiple starting points (root nodes). We find that
there exists some confusion regarding the definition of this sam-
pling method: in some literature, the snowball sampling method
is referred to as BFS,20,30 whereas it is defined as BFS starting
from various root nodes in other literature.25 In our work, the
latter definition is used to distinguish snowball sampling from
BFS.

It is hard to perform analytical analysis for the sampling
methods concerning neighbor exploration due to the network het-
erogeneity. Hence, research is usually based on results obtained
empirically. Some experiment-based works consider the differ-
ence of indicators between the subnetworks and the original net-
works under different sampling methods.19,21–23 These works provide
approximate answers to the question that which sampling method
has better performance for some specific indicators.

The above works analyze the biases that arise during network
sampling with some sampling methods. To eliminate these biases,
some seminal works have been done to design more reasonable
and effective sampling methods concerning different network struc-
tures, say nodes, edges, and connected induced subnetworks under
two different data access assumptions.28 Among these works, some
sampling methods based on importance sampling are designed to
help estimate degree or degree distribution.28,31 Other works are
aiming at sampling higher-order network structures (pattern) like

three-node connected subgraphs32–34 or connected subgraphs with
more than three nodes.35–38

When analyzing the effectiveness of the abovementioned sam-
pling methods, most researchers compare the similarities between
the subnetworks and the original networks. In this context, the prob-
lem of network sampling is equivalent to the problem of network
similarity. For this part of the work, different measures are created
to directly represent topological differences between networks, or by
using kernel methods.39 The former works include those that focus
on the maximum subgraph,40 the minimum subgraph,41 and the edit
distance,42 or using the breadth-first search algorithm with pruning
to search the common part of two different networks.43–45 However,
the extremely high computational complexity of these algorithms
makes them unsuitable for extremely large networks. Therefore,
similarity measures based on kernel methods are studied39 to ensure
computational feasibility. These works include those that use the
distribution of the shortest paths to define the dissimilarity between
different networks,46 or those that use the differences between the
Laplacian matrix eigenvalues.47

The above works show that network sampling and network
similarity issues have received widespread attention. In our work,
we use three interrelated sampling methods to study the biases con-
cerning some topological properties caused by network sampling.
We conclude that the bias caused during the sampling process could
be due to two main reasons: the heterogeneity of complex net-
works and the mechanisms of sampling methods. The former biases
always exist because we estimate global information with partial
information. These errors are similar to accidental errors, as they
can sometimes be reduced by repeated experiments. However, the
latter biases are determined by the sampling methods applied, and
we regard these as systematic errors. In this paper, we focus on the
latter biases to show how these systematic errors affect different
network topological properties during network sampling. We use
both empirical and analytical methods so that one can have a more
comprehensive understanding of the biases caused by the sampling
methods. For the main contribution of this article, we provide a the-
oretical analysis of systematic errors on the size of giant connected
component (GCC) and link density.

The organization of this paper is as follows: In Sec. II, we briefly
review some popular sampling methods and then we describe in
detail the sampling methods we have considered. In Sec. III, we
report the results of experiments on real networks. In Secs. IV and V,
the properties of the size of giant connected component (GCC) and
link density under different sampling methods are discussed to show
their different underlying mechanisms. In Sec. VI, a conclusion is
provided.

II. METHOD DESCRIPTION

As mentioned above, there are several different sampling meth-
ods on real networks. Considering the efficiency, none of them rely
on the complex network properties. These different methods can be
divided into two categories: those based on random sampling and
those based on neighbor exploration.

For the first category, RNS or RLS samples nodes or links
with uniform probability from the original network. Based on these
methods, one can also sample nodes with the probability related to
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their degree to obtain other methods. For the second category, there
are classic BFS and DFS methods, which can also be modified to
obtain other sampling methods. For example, ignoring nodes with
a certain probability when using BFS, one can obtain what is called
forest fire sampling.48 As another example, the random walk sam-
pling method is to randomly choose a neighbor as the next start node
while performing BFS. Independent of the above sampling methods,
whether the induced network resulting from sampling needs to be
extra considered. An induced subnetwork includes all the links with
two ends in the sampling set.

Although there are many different sampling methods, the most
representative ones, as we mentioned, are RNS and BFS. Here, we
provide a detailed description of these two sampling methods. For
RNS,

• First, given the sampling rate S and the node number of the orig-
inal network N, then we randomly sample SN nodes from the
original network without replacement. The probability of each
point being selected is the same.

• Then obtain the induced subnetworks as the one consisting of
all the links with both ends in the sampled set.

For BFS, given the sampling rate S and the node number of the
original network N:

• First, a root node is randomly selected into the sampling set.
• Second, all the nodes that are the neighbor of the nodes in the

sampling set but not in the sampling set are detected (we sample
without replacement).

• Third, all the nodes detected in the third step are sampled into
the sampling set if the number of nodes in the sampling set is
less than or equal to SN. Otherwise, only some of them are ran-
domly selected into the sampling set to ensure that the number
of nodes in the sampling set reaches SN.

• Then, repeat the second and third steps until the number of
sampled nodes reaches SN. If there are no new neighbors and
the number of sampling nodes is less than SN, then choose an
alternative unsampled node as the new root node and repeat the
second and the third steps.

• Finally, obtain the induced subnetworks as the one consisting of
all the links with both ends in the sampled set.

To discuss the effect on the indicators caused by these two
methods, we construct a hybrid method (see Fig. 1) using a method
similar to the snowball sampling method under different root
node rates (root rate, i.e., proportion of root nodes in sampled
nodes) as a natural way to connect RNS and BFS. The differ-
ence between the hybrid method and snowball sampling is that
the latter usually focuses on the “wave,” which means that the
nodes located at the same distance from the root nodes are sam-
pled at once. We do not require this but try to keep the groups
related to the different root nodes the same size in the hybrid
method.

Globally speaking, the hybrid method can be regarded as SRN
repetitions of BFS, where S, R, and N denote the sampling rate, the
root rate, and the number of sampled nodes in the whole process of
sampling, respectively. Each repetition is BFS with the same sam-
pling rate of S/(SRN) = 1/RN, with all the newly sampled nodes
not being included in the other repetitions. The detailed descrip-
tion of this sampling method is a little complicated as we try to keep
the size of each repetition the same, which can be found in S1 in
the supplementary material with the form of pseudocode. For this
hybrid method, one should notice that RNS and BFS are special cases
of this sampling method: the hybrid method degenerates into RNS
when R = 1, and it degenerates into BFS when R = 0. Therefore,
the characteristics of this method become closer to that of RNS with
larger R.

FIG. 1. RNS, BFS, and the hybrid sampling method. The solid nodes and lines represent those who are in the sample set. The hollow nodes and dotted lines denote those
who are not in the sample set. We use the red nodes to represent the root nodes (the start nodes of sampling methods based on neighbor exploring). The hybrid methods
with different root node rates (root rate, R, i.e., proportion of root nodes in sampled nodes) is a natural way to connect the other two methods.
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When studying the differences concerning network topolog-
ical properties, we need to choose some specific indicators and
different measures for detailed research. The indicators used in
this paper include link density, transitivity (proportion of trian-
gles in all three-point groups), the size of giant connected com-
ponent (the number of nodes in the giant connected accounts
for all the nodes in the network, we use the symbol GCC to
represent this measure), pairwise connectivity (the ratio of node
pairs that are in the same connected component), degree dis-
tribution (degree dist), the average degree (avg degree), clus-
tering coefficient distribution (CC dist), and the average clus-
tering coefficient (avg CC). As for the measures to determine
the difference of corresponding indicators, the absolute error is
used. However, when it comes to the indicators concerning dis-
tributions, D-statistics in ks-test is applied as in some previous
works.19,23

III. SAMPLING ON REAL NETWORKS

In this section, we report the results of empirical sampling
experiments on real networks. There are already some previous
works that show that the sampling methods will affect the topo-
logical properties in the subnetworks sampled from the same
network,19,20,22,23 which provide us with ideas for designing the exper-
iments. The main results here are consistent with the previous evi-
dence, i.e., the sampling methods do affect the information acquired
from sampled subnetworks. However, as only the three sampling
methods are focused on in this article, we find more interesting
results in our experiments: both the regular pattern and the irregular
pattern occur when we try to describe the change of the optimal sam-
pling method. We attribute these results to the fact that the sampling
deviation is the collective effect of both the network heterogeneity
and the biases caused by the sampling methods. The regular pattern
occurs when the latter plays a leading role. When the indicator is
sensitive to network heterogeneity, an irregular pattern emerges.

Some real networks are used to perform empirical experi-
ments first. Using these experiments, we want to provide some
rough but intuitive results to show how the biases introduced by
sampling methods affect the subnetworks. To highlight these sys-
tematic biases, we performed repeated experiments to reduce the
impact caused by network heterogeneity. However, it is vital to
use large networks because the discussion of this topic is valu-
able only in this situation. As a compromise between the above
two issues, several networks with 1000 to 10 000 nodes are studied.
These real networks include yeast protein–protein binding network
generated by yeast two hybridization (Y2H), yeast protein–protein
binding network generated via tandem affinity purification exper-
iments (TAPs), high-energy theory collaborations (HEPs), Email
(only the part corresponding to the original GCC), coauthorships
in network science (NetSci), and hyperlinks between weblogs on US
politics (USP). All of these networks are converted to undirected
networks, the properties of which are shown in Table I.

We repeat the following two-stage experiments to obtain the
empirical results:

• Given a certain sampling rate S, subnetworks are first sampled
according to different root rates R.

TABLE I. Description of real network used in sampling experiments. These networks

are undirected without self-loops or transformed into the undirected network. We

only use the networks with 1000–10 000 nodes because the experiments need to be

repeated several times to reduce the impact of network heterogeneity.

Description Node Link Link density GCC

Y2H49 2111 2 203 9.89 × 10−4 0.6907
TAP50 1373 6 833 7.26 × 10−3 1
HEP51 8361 15 751 4.51 × 10−4 0.6979
Email52 1133 5 451 8.50 × 10−3 1
NetSci53 1589 2 742 2.17 × 10−3 0.2385
USP54 1490 16 715 1.51 × 10−2 0.8201

• Then, we compare the difference of indicators under different
root rates but the same sampling rate with the corresponding
measures.

The first question we asked is whether there is an optimal root
rate for all the different network properties. To help detect the opti-
mal root rate (i.e., the optimal sampling method) under the given
sampling rate S, we show the mean absolute errors (MAEs) or the
mean absolute values of the corresponding metrics with heatmaps.
Part of the results is presented in Fig. 2.

As a quick result, the times that each sampling method out-
performs the others in preserving different indicators under distinct
networks are counted. We display the frequencies that the sam-
pling method performed the best in Table II, with triples to present
these frequencies in their three positions. At most times, the hybrid
method performed the best (among the indicators we considered),
suggesting that this method seems to be the best one without any
additional information. However, one should also realize that this
method has a larger parameter space (root rate R). Thus, how to
choose a proper parameter remains a question. In addition, not all
the indicators share the same pattern, as link density and transitiv-
ity are usually better preserved by RNS. These results suggest that
different indicators do not comply with the same pattern.

Then, the question arises: what are the differences between the
underlying mechanisms of the biases concerning these distinct indi-
cators. This problem leads us to conduct a more detailed theoretical
analysis. All indicators used in this article can be divided into four
groups. That is, the indicators that can be used to describe topo-
logical properties concerning the degree (avg degree, degree dist),
clustering coefficient (avg CC, CC dist), connectivity (GCC, pairwise
connectivity), and network density (link density, transitivity). We
find that almost all the indicators in the same group show very sim-
ilar patterns except for the pair of clustering coefficients (S2 in the
supplementary material). One could find that the optimal root rates
in the corresponding heatmaps show noisier patterns in S2.5 and
S2.6 in the supplementary material. We attribute these phenomena
to that the clustering coefficients being more sensitive to the subnet-
works being sampled. As a result, the clustering coefficients in the
subnetworks are more severely affected by network heterogeneity
and these effects are more difficult to analyze.
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FIG. 2. Results of network sampling experiments. We use mean absolute errors (MAEs) to describe the ability that a specific sampling method can be used to preserve the
corresponding network indicators in subnetworks. All the MAEs under the same sampling rate (i.e., in the same row of each graph) are rescaled [i.e., (x − xmin)/(xmax − xmin)]
to help detect the optimal root rate. Note that the lighter the color, the smaller the MAE and the difference of the corresponding indicator. The results we show here are only
concerning AVG DEGREE (labeled with a), LINK DENSITY (b), and AVG CC (c) under H2Y (labeled 1), TAP (2), and USP (3). More other results, including the MAE results
before rescaling, can be found in S2 in the supplementary material. One can find that the changes of MAEs are regular (like graphs labeled with a or b) or irregular (c);
network-independent (b) or network-dependent (a or c).

Finally, we choose GCC and link density for our further study.
These two indicators, rather than the others, are chosen for the fol-
lowing two reasons: (1) There are already several works concerning
degree,25,26 and the analysis of the average degree is somewhat close
to that of the link density, as they are similar by definition. (2) The
analysis of pairwise connectivity is based on the distribution of the

sizes of the connected components, and transitivity can be regarded
as a higher-order property to describe the network density. The indi-
cators of pairwise connectivity and transitivity are relatively more
complicated, whereas GCC and link density share similar patterns
with them. Therefore, we focus on the indicators of GCC and link
density in Secs. IV and V.
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TABLE II. The frequency of each sampling method outperforms the others at the preservation of the corresponding network indicator. We get the frequencies by these two steps:

first, the sampling method (RNS, hybrid, or BFS) corresponding to the optimal root rate is found under the given sampling rate S. Then, the frequencies that each sampling method

occurs are calculated under different sampling methods. The frequencies are presented in the three positions of triples. For example, (0.11, 0.89, 0) means that BFS accounted

for 0.11, the hybrid method accounted for 0.89, and RNS accounted for 0 among all the optimal sampling methods appearing in the experiments. If two different sampling

methods perform equally well, they win 0.5 experiments. Most times the hybrid method performs the best. However, RNS performs the best for link density and transitivity, which

both describe the density of networks. When the original network is connected (TAP and Email), BFS performs better concerning GCC and pairwise connectivity. More detailed

information can be found in S2 in the supplementary material.

Network avg CC CC dist AVG degree Degree dist GCC
Pairwise

connectivity Link density Transitivity

Y2H (0, 1, 0) (0, 1, 0) (0.11, 0.89, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1)
HEP (0, 1, 0) (0, 1, 0) (0.06, 0.94, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1)
TAP (0, 0.94, 0.06) (0, 1, 0) (0.11, 0.89, 0) (0.11, 0.89, 0) (0.67, 0.33, 0) (0.67, 0.33, 0) (0, 0, 1) (0, 0, 1)
Email (0.06, 0.94, 0) (0.17, 0.83, 0) (0, 1, 0) (0, 1, 0) (0.53, 0.47, 0) (0.53, 0.47, 0) (0, 0, 1) (0, 0, 1)
NetSci (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0.06, 0, 0.94)
USP (0.56, 0.44, 0) (0.61, 0.39, 0) (0.11, 0.89, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1)

IV. THE IMPACT OF SAMPLING METHODS ON GCC

In this section, we present a theoretical analysis of the GCC
in the subnetwork under different sampling methods. As far as we
know, there are already some results focused on the giant connected
component in subnetworks. For example, some rough empirical
experiments show that BFS has a relatively better effect in preserv-
ing GCC.23 Some works are focused on the number of connected
components.55,56 Here, we provide an analysis of the size of giant
connected components (GCCs), a popular indicator in the field of
a complex network.

We begin by presenting our empirical results using heatmaps
so that one can easily detect the differences in optimal root rates
concerning distinct indicators. To help distinguish the differences
between the sampling methods, we rescaled all the MAEs under
the same sampling rate, the same indicators, and the same network.
Three representative results are selected and shown in Fig. 3 so that
one can easily detect the pattern of their behaviors (the remaining
results can be found in S2.3 in the supplementary material).

First, there are two different patterns among all these results.
The optimal root rate varies with different sampling rates in the
first pattern, whereas it remains the same in the second pattern. We
notice that the appearance of these two different patterns is related
to whether the original network is connected, as the second pattern
only appears when the original network is connected.

Second, the optimal root rate increases with sampling rates in
the disconnected networks. The corresponding results with respect
to Y2H are shown in Fig. 4, where one can find more detailed
information such as the optimal root rate and corresponding GCC
sampled under different sampling rates (more results in S3 in the
supplementary material). Considering that all the GCCs sampled
approach the same value (the GCC in the original network) as
the sampling rate approaches 1, we attribute this phenomenon to
the fact that different sampling methods have distinct convergence
speeds.

Third, one can see that the optimal root rates shift to the
right in Fig. 3(a3) compared to (a1). Considering that USP has a
much higher link density (1.51 × 10−2) than TAP (7.26 × 10−3),
we hypothesize that the optimal root rate gets larger faster in the
original networks with greater link density.

Then, we try to construct a model based on the random net-
work to help reveal the underlying mechanisms analytically. We
show that these phenomena exist even in simple random networks,
ensuring that these biases are introduced by the sampling methods
themselves rather than the heterogeneity of networks.

First, it is intuitive that the optimal sampling method is BFS
if the original network is connected since the subnetwork sampled
is also supposed to be connected. However, the optimal sampling
method changes to the hybrid method when the original network is
disconnected. This is because the subnetworks sampled by RNS usu-
ally share low connectivity, whereas those sampled by BFS tend to
have higher connectivity. Therefore, the hybrid method has the best
performance in disconnected networks because the subnetworks
sampled by this method are neither overly nor poorly connected.

Then, we use the random network model57 to create a discon-
nected system of two networks for further analysis. Let P1, P2 and
N1, N2 denote the corresponding connection probabilities and num-
bers of nodes in different random networks, respectively. Without
loss of generality, let N1 > N2; then, the original GCC is supposed
to be GR = N1

N1+N2
. Note that as we restrict each of the random

networks to be connected, the following equation holds:58

pi >
log (Ni)

Ni

, i = 1, 2. (1)

When BFS is used, the initial root node is located in the GCC with
a proportion of GR. Let N = N1 + N2 and let S denote the sampling
rate. In this situation, the expected GCC observed in the subnetwork
is supposed to be

ˆGCC1 =

{

1, S < GR,
N1
NS

, S ≥ GR.
(2)

However, when the initial root node is not located in the GCC,
which occurs with probability 1 − GR, the expected GCC observed
in the subnetwork is supposed to be:

ˆGCC2 =











1, 1 − GR > S,
N2
NS

, 2 − 2GR > S ≥ 1 − GR,

1 − N2
NS

, S ≥ 2 − 2GR.

(3)
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FIG. 3. The mean absolute errors (MAEs) of GCC under different sampling methods. We show the results corresponding to Y2H, TAP, and USP in the graphs that are in the
first, second, and third columns, respectively. The heatmaps in the first row show the MAEs of GCC compared to the original networks under the given root rate and sampling
rate. We rescale the MAEs under the same sampling rate to highlight the optimal root rates. The lighter the color, the smaller the MAE and the difference of GCC. The graphs
in the second row show the curves of the MAEs under root rate R = 0.5 and different sampling rates, but the graphs in the third row show those curves under the sampling
rate S = 0.5 and vary root rates. Note that only the network of TAP (labeled with 2) is connected. The result for Y2H (labeled 1) and USP (labeled 3) share the same pattern
while the optimal root rate shifted to the right side due to the larger density of the original network. This result suggests that the optimal root rate will be affected by the GCC
and link density of the original network. See more results in S2.3 in the supplementary material.

Now, we can calculate the expected ˆGCC when doing BFS as there
are only two situations that happened to the initial root node, that
is, the root node located in the GCC of the original network or not.
Given the sampling rate S, we get the expected GCC according to
Eq. (2) if the first situation happens, and according to Eq. (3) if the
second situation happens. Combining that the two situations hap-
pen with the probability of GR and 1 − GR, respectively, we can get
the expected ˆGCC under BFS,

ˆGCC = ˆGCC1 × GR + ˆGCC2 × (1 − GR)

=































1, 1 − GR > S,

N2
2

N2S
+ N1

N
, GR > S ≥ 1 − GR,

N2
1+N2

2
N2S

, 2 − 2GR > S ≥ 1 − GR,

N2
N

−
N2

2−N2
1

N2S
, S ≥ 2 − 2GR.

(4)

In relative terms, the analysis of GCC in the subnetworks under
RNS is lightly more difficult, and it is often combined with the study
of the percolation process in the networks. One can consider adding
the process of sampling to the work where the relationship between
the GCC of the random network and link probability is analyzed.57,59

Let S, k, and N denote the sampling rate, the average degree, and
the number of nodes in the original network, respectively. Let NG

represent the number of nodes in the giant connected component of
subnetworks (NG 6 NS). The probability that node u is not located
in the giant connected component of the subnetwork is

1 −
NG

NS
. (5)

Now, consider the above probability from another angle. The
probability that the node u is not located in the GCC can be rewritten
as the probability that the node u does not connect to the GCC via
any other nodes. First, we focus on one of the nodes other than u
in the subnetwork. We record this node as v (one should notice that
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FIG. 4. The detailed results of GCC on Y2H. (a) shows the optimal root rate
under different sampling rates, where the curve shows an upward trend as the
sampling rate increases. (b) shows the GCC observed in the subnetwork under
the corresponding optimal root rate. (c) shows the standard deviation of GCC
under the same sampling rate and different root rates, where the overall downward
trend suggests that the influence caused by the selection of root rates gradually
decreases with the sampling rate. (Note that Y2H is disconnected, whereas in
the connected situation, the curve shows another different pattern, which can be
found in S3.1 supplementary material.)

there are NS − 1 such nodes). Then, the situation that u does not
connect to the GCC via v can be attributed to two situations:

• Situation 1: u does not connect to v.
• Situation 2: u does connect to v, but v does not connect to the

giant connected component of the subnetwork.

For situation 1, the link between u and v does not exist with the
probability of 1 − k

N
. It is because the expected degree of u is Sk, and

the nodes number of the subnetwork is SN, so the above probabil-
ity can be calculated as 1 − Sk

SN
= 1 − k

N
. In addition to that, one can

also think that the subnetworks sampled from random networks via
RNS are also random networks that share the same link probabil-
ity. For situation 2, the event that u does link to v happens with the
probability of k

N
according to the derivation of situation 1. v does

not connect to the GCC of the subnetwork with the probability of
1 −

NG
NS

according to Eq. (5). Therefore, situation 2 happens with the

probability of k
N
(1 −

NG
NS

).
Finally, we can calculate the probability that u does not con-

nect to the GCC of the subnetwork via v as 1 − k
N

+ k
N

(

1 −
NG
NS

)

with some basic knowledge of combinatorial mathematics. Combin-
ing that there are NS − 1 such nodes v, the probability that u does
not connect to the giant connected component of the subnetwork is

[

1 −
k

N
+

k

N

(

1 −
NG

NS

)]NS−1

. (6)

As Eqs. (5) and (6) actually describe the same phenomenon, the
following equation holds:

1 −
NG

NS
=

[

1 −
k

N
+

k

N

(

1 −
NG

NS

)]NS−1

. (7)

With NG ≥ 1, the GCC in the subnetwork ˆGCC is

ˆGCC = max {NG, 1}/N,

s.t. ln

(

1 −
NG

NS

)

=

(

k

N2S
−

k

N

)

NG.
(8)

Here, equation ln (1 − x) = −x + o(x2) is used because kNG
N2S

is
infinitesimal when N → ∞.

Given k, N, and S, Eq. (8) can be solved by numerical methods.
Here, we present both the results of the analytical solutions and the
experimental results of sampling on the corresponding random net-
works (Fig. 5). The experimental results and the theoretical solutions
fit very well. Thus, we can conclude that given the average degree,
there will be a process of percolation phase transition in the network
with increasing sampling rates. The critical sampling rate Sc satisfies

Sck = 1. (9)

This conclusion can be found in some other works57,59 that possibly
use different models. Therefore, the critical sampling rate decreases
with the original average degree (or link density).

Now, the above-mentioned system obtained by combining
two separate random networks can be considered. Using the same
symbols, the theoretical ˆGCC can be determined by

ˆGCC = max {NG1, NG2, 1}/N,

s.t. ln

(

1 −
NG1

N1S

)

=

(

k1

N2
1S

−
k1

N1

)

NG1,

ln

(

1 −
NG2

N2S

)

=

(

k2

N2
2S

−
k2

N2

)

NG2.

(10)

For convenience, let N1 = 600, N2 = 400, and P1 = P2 = P; here, we
draw the curves of theoretical ˆGCC under BFS and RNS (Fig. 6). It
can be seen that the ˆGCC under RNS approaches the original GCC
from below, whereas the ˆGCC under BFS approaches the original
GCC from above.

Therefore, it is creditable that the ˆGCC under the hybrid
method will be located between the corresponding curves, although
the GCC under the hybrid method seems difficult to derive pre-
cisely. Thus, the optimal sampling method that preserves GCC is
the hybrid method.

In addition, the convergence behaviors under different meth-
ods can be compared using the partial derivative technique. For BFS,
at the convergence point S = 1, there is

∂ ˆGCC

∂S

∣

∣

∣

∣

S=1−

=
N2

2 − N2
1

N2S2

∣

∣

∣

∣

S=1−

=
N2

2 − N2
1

N2
, (11)

which is a nonzero constant [note that when N1 = N2, the fourth
process in Eq. (4) with respect to S ≥ 2 − 2GR does not occur, and
∂ ˆGCC

∂S

∣

∣

S=1− = −0.5]. For RNS, the sampling rate is also S when only
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FIG. 5. Analytical solutions [according to Eq. (8), with k = pN] and the experimental sampling results of GCC in the subnetworks on random networks under different
sampling rates and the given random networks. (a)–(f) show the experimental results under 10 000 nodes but different link probabilities. Ten experiments are performed at
each sampling rate to take the average. The results show that the analytical solution fits well with experimental results. One can also find roughly that the percolation phase
transition happens at the point Sc where Sck = 1.

one of the random networks is considered in this situation. Using Ĝ1

to denote the GCC in the random network with N1 nodes, we have
the following equation according to Eq. (8):

ln (1 − Ĝ1) =

(

k1Ĝ1

N1
− k1Ĝ1S

)

. (12)

One can take the partial derivative with respect to S on both sides,

∂Ĝ1

∂S
=

−k1Ĝ1

1
Ĝ1−1

− k1
N1

+ k1S
. (13)

Now, the whole system combined by two separate networks can be
considered. Substitute ˆGCC = Ĝ1N1/N in Eq. (13) near point S = 1,
as the corresponding part of Ĝ1 is supposed to be the giant connected

component of the whole system,

∂ ˆGCC

∂S

∣

∣

∣

∣

S=1−

=
∂ ˆGCC

∂Ĝ1

∣

∣

∣

∣

S=1−

∂Ĝ1

∂S

∣

∣

∣

∣

S=1−

=
N1

N

∂Ĝ1

∂S

∣

∣

∣

∣

S=1−

=
−k1 · ˆGCC

N1
ˆGCC·N−N1

− k1
N1

+ k1S
. (14)

Note that ˆGCC · N = N1 when S → 1−; thus, we have

∂ ˆGCC

∂S

∣

∣

∣

∣

S=1−

= 0. (15)

Comparing Eqs. (11) and (15), we can conclude that there exists a
δ > 0 such that the curve of GCC under RNS is flatter (which means
higher convergence speed) than that under BFS when S ∈ (1 − δ, 1).
Therefore, the hybrid method shares closer properties with RNS and
will have better performance at sufficiently big sampling rates, as
both GCCs under RNS and BFS approach the GCC of the origi-
nal network with an increased sampling rate. Thus, the mechanism
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FIG. 6. Given N1 = 600, N2 = 400, and P1 = P2 = P, we show the analytical
ˆGCC under BFS and RNS corresponding to Eqs. (4) and (10) (note that the ˆGCC

under BFS does not change with P). The ˆGCC sampled by RNS approaches the

original GCC (GCC of original network) from the below, whereas the ˆGCC sam-

pled by BFS approaches the original GCC from the above. Therefore, the ˆGCC
sampled using the hybrid method is supposed to locate between the two curves,

suggesting that the hybrid methods should perform the best. Notice that the ˆGCC
sampled using RNS has relatively good performance near sampling rate = 1. It
is not accidental but determined by the different convergence speeds of these two
methods.

by which the optimal root rate increases with the sampling rate has
been revealed.

Finally, one should note that the distribution of nodes sampled
in different connected components does not change with differ-
ent sampling rates. According to Eq. (9), it is easier for the giant
connected components to emerge in the networks with higher link
density. However, the ˆGCC under BFS has nothing to do with link
density in the original network according to Eq. (4), as we have
restricted both the number and the size of connected components
in the original network. Therefore, the optimal root rate increases
faster in denser networks.

These results can be generalized to more common situations
where there are several connected components and the link den-
sity varies across different components. We can obtain the following
conclusions: the GCC of the subnetwork under RNS is mainly influ-
enced by the link density of the original GCC, as the giant connected
component more easily emerges with a higher link density. How-
ever, the decisive factor of GCC under BFS is the size of the GCC in
the original network, as it determines the probability for the initial
node to be located in the right place. Therefore, the hybrid method
will be affected by both factors. In addition, it is intuitive that the sit-
uation in which the original network is connected can be regarded as
a special case in which there is only a single connected component.

V. THE IMPACT OF SAMPLING METHODS ON LINK

DENSITY

Section IV shows that the optimal sampling method for GCC is
always located in the parameter space of the hybrid method or BFS.
However, from the experiments, it can be seen that RNS always has

FIG. 7. The detailed results of link density on Y2H. (a) shows the optimal root
rate with respect to different sampling rates. Note that the link density in the sub-
network does not change with different sampling rates and performed the best
under RNS. (b) shows the link density observed in the subnetwork under the cor-
responding optimal root rate. (c) shows the standard deviation of link density under
the same sampling rate and different root rates. One can compare this figure with
Fig. 4 to distinguish the different patterns between GCC and link density. (More
experimental results can be found in S3.2 in the supplementary material.)

the best performance in preserving the link density in subnetworks
(Fig. 7). In this section, the properties of link density are discussed.
There are lots of works focused on the analysis of the sampled aver-
age degree or degree distribution,20,25,26,28,31 which are very similar
to the link density we focused on in this section. However, all of
these works focus on random sampling methods, and we provide
an analysis under the BFS and the hybrid sampling methods here.
Besides that, some previous empirical results are consistent with our
conclusion concerning link density.23

Specifically, random networks whose nodes share the same
degree are used to construct the sampling dynamics so that we can
focus on the biases introduced by sampling methods rather than
those caused by heterogeneity. We show that the underlying mech-
anism of bias concerning the link density is different from that of
GCC.

Consider the increase in links when a new node is taken, which
is related to the size of the sample set: in cases where the size of
the sample set is very small, almost no new link will be sampled.
However, when the sample set is nearly the same size as the origi-
nal network, almost all the links connected to that new node will be
sampled. Thus, the following equation holds:

ER
n+1 = ER

n +
n

N
k, (16)

where ER
n denotes the link number of the subnetwork under RNS,

and n and N denote the node numbers of the subnetwork and the
original network, respectively.
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FIG. 8. The numerical results for Eqs. (16) and (17). N = 5000, k = 100, and
every sampling experiment are performed 1000 times. (a) shows the results cor-
responding to RNS and (b) shows the results corresponding to BFS. The relative
deviations between the fitted slope and the theoretical slope are 1.1 × 10−6 under
RNS and 3.1 × 10−3 under BFS.

However, in the case of BFS, usually at least one link will
be sampled when a new node is acquired because of its neigh-
bor exploring property. We say “usually” because it does not hold
when the sampled nodes jump from one connected component to
another. Here, we assume that the number of connected compo-
nents is much smaller than the number of nodes, as is often the
case in real networks; then, the above situation can be ignored. We
have

EB
n+1 = EB

n + 1 +
n

N
(k − 1), (17)

where EB
n denotes the link number of the subnetwork under BFS. The

difference between Eqs. (16) and (17) can be attributed to the fact

FIG. 9. The experimental results and analytical solution of RNS, BFS, and the
hybrid method [according to Eqs. (16)–(18), R = 0.5] on the random network
(k = 20, N = 1000). All the corresponding analytical results and experimental
results fit well. The results under RNS are always near the link density of origi-
nal networks. However, the results under BFS and the hybrid method decrease
to the original link density with sampling rates. These results explain why RNS
always has the best ability to keep the link density of the original network. Fifty
repeated experiments are performed to take the average at each sampling rate in
the experimental part.

that a part of the original degree is taken outside to guarantee the
property of neighbor exploration. In random networks, nodes are
homogeneous, which means that Eq. (17) applies not only to BFS but
also to other sampling methods based on the property of neighbor
exploration.

Equations (16) and (17) can also be proven with some numer-
ical methods under a certain accuracy: all one needs to do is to
record the number of new edges En+1 − En and the correspond-
ing n/N when a new node is taken under a given random network
and certain sampling methods. Then, the method of linear regres-
sion can be used to fit En+1 − En with n/N. The results can be seen
in Fig. 8.

However, as one can see, the deviation between the theoretical
value and the real value under RNS is smaller than that under BFS.
The deviation, as we think, can be divided into two parts. The first
part comes from the scale of networks. The phenomenon of frac-
tional rounding occurs in our model when the scale of the network
is finite: the increase in links in the sample set between two steps can
be a noninteger, which does not match the real situation. However,
one can also easily prove that this effect gradually diminishes as N
increases. The second source of deviation is that we assume that the
average degree k is far smaller than the scale of networks N. When
k = N − 1, Eq. (16) still holds; however, Eq. (17) has errors as one
can easily figure out that Eq. (16) should be the correct form for BFS
at this time.

The root rate R has a physical meaning in this process when
the hybrid method is considered, as it denotes the probability of
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FIG. 10. The analytical solutions [according to Eqs. (16)–(18), where k is replaced
with the average degree of the original network] and experimental results of
link density with respect to TAP in the subnetworks are shown (R = 0.5). Fifty
repeated experiments are performed to take the average at each sampling rate
for the experimental part. The result shows that though the above analytical solu-
tions do not fit well in real networks, they roughly describe the relations between
the different methods. The results corresponding to the other networks can be
found in S4 in the supplementary material.

sampling a node with RNS. Thus,

EH
n+1 = EH

n +
nk

N
× R +

[

1 +
n

N
(k − 1)

]

× (1 − R), (18)

where R and EH
n denote the root rate and the link number under the

hybrid method, respectively.
All of these equations can be solved analytically, and one can

obtain the results of link density ρn with respect to different sample
sizes n. Here are the results, and the proof can be found in S5 in the
supplementary material,

ρR
n =

k

N
, ρB

n =
k − 1

N
+

2

n
(19)

and

ρH
n =

k − 1 + R

N
+

2 − 2 × R

n
, (20)

where ρR
n , ρB

n , and ρH
n denote the link density of the subnetwork

under RNS, BFS, and the hybrid method, respectively. Interest-
ingly, the link density under RNS does not depend on n and
remains a constant, whereas the link density under BFS monoton-
ically declines to k+1

N
as n → N. When root rate ∈ (0, 1), the link

density under the hybrid method is between those under BFS and
RNS.

In addition, the link density ρT can be determined as ρT = k
N−1 .

One can find that this result is different from both ρR
n and ρB

N.
However, we have ρR

n ∼ ρB
N ∼ ρH

N ∼ ρT as N → ∞. These results

show that there is a deviation in the theoretical results when N is
finite.

The above results prove that the link density of the subnetwork
under BFS decreases to the link density of the original network with
sampling rates, whereas the link density under RNS is always near
the link density of the original network. The link density under the
hybrid method shares the same behavior as BFS but is closer to the
link density of the original network. When the corresponding exper-
iments are performed (see Fig. 9), we can see that the model fits well
with the experimental results.

Due to the network heterogeneity, the above analytical results
for BFS and the hybrid method do not hold on real networks if k is
replaced with the average degree (Fig. 10; also find the extra similar
results in S4 in the supplementary material). We find that the link
density obtained by the experiment is usually larger than the analyt-
ical solution. Considering the fluctuation of degree and properties
such as assortativity of real networks, these biases are caused by the
heterogeneity of real networks rather than the sampling methods
themselves.

VI. CONCLUSION

In this paper, the properties of subnetworks under distinct sam-
pling methods are discussed. We conclude that the biases of network
properties under sampling are mainly caused due to two reasons:
the heterogeneity of complex networks and the biases introduced by
the sampling methods. The former is mainly affected by the prop-
erties of networks, whereas the latter is determined by the sampling
methods themselves and is amenable to analysis.

We mainly focus on the effect introduced by the sampling
methods as it can be regarded as the systematic error while doing
sampling. Specifically, we use both numerical and analytical meth-
ods to discuss the biases of network sampling under RNS, BFS, and
the hybrid method. Empirically, the hybrid method has the best abil-
ity to preserve the properties of the original networks at most times,
which may be regarded as the best method when there is no addi-
tional information. However, this is not true for all the indicators,
as we find that the link density and transitivity, which describe the
density of the networks, are better preserved by RNS. Therefore, one
should be careful when trying to use subnetworks as substitutes for
the original networks.

In addition, there was one phenomenon detected in all our
experiments: With the increase in sampling rates, the standard devi-
ations of all these properties concerning the same sampling rate
and different root rates show a downward trend (see S6 in the
supplementary material). This suggests that the effects caused by the
choices of different sampling methods are less significant as the size
of the subnetwork increases.

As the main contribution of this article, the properties of GCC
and link density are studied to discuss the underlying mechanisms
of biases caused by sampling methods themselves. Usually, BFS has
the best ability to preserve the GCC of connected networks, whereas
the hybrid method performs the best in disconnected networks.
In the latter situation, we analytically prove that the biases concern-
ing GCC under BFS are mainly influenced by the size of the GCC
in the original networks, whereas GCC under RNS is determined
by the link density of the original GCC. With these results, we can
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explain the behaviors of the biases introduced by different sampling
methods concerning GCC.

In contrast to GCC, the best sampling method preserving link
density is always RNS. A process of sampling dynamics is con-
structed to compare the link density under different sampling meth-
ods to reveal the underlying mechanism. The results show that the
link density under RNS is always near the link density of the orig-
inal network regardless of the sampling rates, whereas that under
BFS or the hybrid method approaches the link density of the orig-
inal network with increasing sampling rates. Although this model
is not a precise fit in real networks due to network heterogeneity, it
accurately describes the relative relationship between the sampling
methods. It also proves that the deviation appearing in the process
of sampling on real networks is indeed the collective effect of both
the network heterogeneity and the biases caused by the sampling
methods.

Finally, on the topic of network similarity, our results show
that the biases caused by sampling methods are different for dis-
tinct network properties. In this context, it is easy to sample two
different subnetworks from the same original network where each
subnetwork will have at least one topological property closer to the
original network than the other. Therefore, it is not advisable to
define the similarity of complex networks from a single perspective
if the relative importance of the different network properties cannot
be determined.

Our work helps us to clarify the sources of biases encoun-
tered when trying to gather information from large networks. Some
models are constructed to provide baselines of biases caused by
sampling methods in specific situations. Based on this work, one
may have a deeper understanding of the information sampled from
the networks. In this context, these results are of great signifi-
cance for understanding the large and complex systems in the world
surrounding us.

SUPPLEMENTARY MATERIAL

See the supplementary material for the experimental results
concerning other indicators, formula derivation process, and other
detailed information.
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