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Abstract
Objective: We investigate surname affinities among areas of modern-day China, by constructing

a spatial network, and making community detection. It reports a geographical genealogy of the

Chinese population that is result of population origins, historical migrations, and societal

evolutions.

Materials and methods: We acquire data from the census records supplied by China's National

Citizen Identity Information System, including the surname and regional information of 1.28 bil-

lion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to

construct a spatial network based on the matrix of isonymic distances, which is often used to

characterize the dissimilarity of surname structure among areas. We use the fast unfolding algo-

rithm to detect network communities.

Results:We obtain a 10-layer MMST network of 362 prefecture nodes and 3,610 edges derived

from the matrix of the Euclidean distances among these areas. These prefectures are divided

into eight groups in the spatial network via community detection. We measure the partition by

comparing the inter-distances and intra-distances of the communities and obtain meaningful

regional ethnicity classification.

Discussion: The visualization of the resulting communities on the map indicates that the prefec-

tures in the same community are usually geographically adjacent. The formation of this partition

is influenced by geographical factors, historic migrations, trade and economic factors, as well as

isolation of culture and language. The MMST algorithm proves to be effective in geo-genealogy

and ethnicity classification for it retains essential information about surname affinity and high-

lights the geographical consanguinity of the population.
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1 | INTRODUCTION

Over the last two decades, the use of surnames as research tools has

rapidly expanded across the fields of anthropology, population geogra-

phy, human population biology, and genetic genealogy (Cheshire, 2014;

Colantonio, Lasker, Kaplan, & Fuster, 2003; King & Jobling, 2009;

Mateos, 2007). In most countries of the world, surnames (family names)

are passed down from father to son, reflect Y chromosome inheritance

(Zei, Matessi, Siri, Moroni, & Cavalli-Sforza, 1983), and thus can serve as

genetic metaphor (Darlu et al., 2012). Surnames have also been applied

to the study of some aspects of culture. For example, research has found

that surname distributions are strongly related to language (Manni,

Heeringa, & Nerbonne, 2006; Scapoli et al., 2005), migration, and

social mobility (Dipierri, Ela, Rodriguez-Larralde, & Ramallo, 2016;

Longley, Webber, & Lloyd, 2007).

The most prevailing applications of surname data are geo-

genealogy and ethnicity classification that can be used by government

and social scientists to define the geographical boundaries of ethnic

groups. The main rationale is that isonymy is the most direct way of

estimating the genetic relationship among populations from different

areas (Lasker, 1977). Several empirical studies have shown that there

are distinct variations in isonymy among subregions within countries,
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such as Argentina (Dipierri et al., 2005), Chile (Barrai et al., 2012), Par-

aguay (Dipierri et al., 2011), and Bolivia (Rodriguez-Larralde et al.,

2011). Du, Yuan, Hwang, Mountain, and Cavalli-Sforza (1992) and Liu,

Chen, Yuan, and Chen (2012) in particular, separate the north and

south regions in China, and find that the Yangtze river and the Yellow

river are the approximate boundaries. Using the isonymic distance

derived from isonymy theory as input data, several clustering tech-

niques have been proposed to regionalize surnames, including hierar-

chical clustering (Longley, Cheshire, & Mateos, 2011), k-means

clustering (Cheshire, Longley, & Singleton, 2010), multidimensional

scaling (MDS) (Cheshire, Longley, & Mateos, 2009), self-organizing

maps (SOMs) (Rodríguez-Díaz, Blanco-Villegas, & Manni, 2017), and

Monmonier's algorithm (Manni, Guerard, & Heyer, 2004). Many works

applying these approaches into geo-genealogy and ethnicity classifica-

tion can be found in the recent literature (Mateos, 2014).

At the beginning of this century, an innovative clustering tech-

nique called “community detection” was proposed by researchers

working in network science (Girvan & Newman, 2002). With the dis-

covery of “small world” and “scale free” phenomenon (Barabási &

Albert, 1999; Watts & Strogatz, 1998), complex network has attracted

much attention as a new systematic way of modeling complex sys-

tems (Barabási, 2016). It can also be used to study the relationships

among individuals, groups, and organizations in human societies

(Borgatti, Brass, & Halgin, 2014; Szell, Lambiotte, & Thurner, 2010).

Some researchers have used network approach to examine naming

connections and have used the technique of community detection to

identify naming communities. Mateos, Longley, and O'Sullivan (2011)

took the lead when they constructed a two-mode (bipartite) network

of forename and surname associations and two one-mode networks

of surnames and forenames by using a large sample of population in

17 countries. Kowalska, Longley, and Musolesi (2015) expanded this

work to 23 countries in four continents. Another approach to con-

structing surname networks uses similarities among surnames.

Novotný and Cheshire (2012) built a Czech surname network using a

similarity based on the pairwise probabilities of the co-occurrence of

surnames. By employing the well-developed techniques of community

detection to a naming network, these pioneering researchers have

found that the network representation clearly defines ethno-cultural

boundaries. As far as we know, there is still little research associated

with surname studies which concerns on spatial network and the com-

munity detection in it.

Chinese surnames are a significant and remarkable data source in

surname studies. The cultural continuity in China is one of the oldest

in the world, and its hereditary surname history dates back approxi-

mately 5,000 years (Hanks, 2003).1 In traditional Chinese society, the

effect of the small-scale peasant economy was such that people sel-

dom moved from their homeland of origin (Lee, Fok, & Zhang, 2008).

Families sharing the same surname tended to live together, especially

in the villages (Wu, 1927), and thus the Chinese regional surname

structure strongly reflects regional consanguinity and ethnicity. Chi-

nese culture is dominated by Han culture in which the concept of

patrilineal surname has been deeply rooted in the minds of people.

Hence, Chinese people attach great importance to the surname and

its inheritance. People cling to their surnames loyally and do not

change their surnames unless some special circumstances, such as tak-

ing noble surname from the emperor, adoption. Moreover, women do

not change their surnames after marriage. As a result, Chinese sur-

names are paternally inherited in a stable and continuous way (Yuan &

Zhang, 2002). Using sampling data of surnames and a short tandem

repeat on the Y-chromosome (Y-STR) in Shandong province, Shi

et al. (2018) found that Chinese surnames can be inferred from Y-STR

profiles, indicating that Chinese surnames are an accurate data source

when studying geo-genealogy and ethnicity classification.

We here apply a community detection algorithm to a spatial net-

work to analyze surname affinities among geographic areas and create a

regional surname geography. We use a large sampling of Chinese sur-

name data to construct the spatial networks. The network nodes are

administrative regions at the prefectural level, and the edges are defined

by isonymic distances. To guarantee that there are no isolated nodes in

the network, we can construct it using the minimum spanning tree (MST)

algorithm (Prim, 1957). Although the most essential edges are retained in

the MST network, many important links are lost. To remedy this weak-

ness, we modify this algorithm by retaining as many essential edges as

possible. The new algorithm, multilayer minimum spanning tree (MMST),

is an enhanced and expanded MST. We use the MMST to construct a

spatial network with a topology that allows the implementation of com-

munity detection. As we will show, without any previous knowledge on

the geographical information of the concerned regions, this method is

able to produce a clear community structure in both topological network

and geographical connections.

2 | MATERIALS AND METHODS

2.1 | Data and materials

Our data set from the China's National Citizen Identity Information

Center (NCIIC) lists the occurrence of individual surnames in Chinese

prefectures in 2007. To protect citizen privacy, the NCIIC substitutes

a five-digit number (surname ID) for each surname.2 Prefectures in

China include prefectural level cities, autonomous prefectures, and

leagues. Excluding Hong Kong, Macao, and Taiwan, the data set

includes 362 prefectures. On average, there are 3.5 million people and

1,313 surnames in a prefecture.

There are 1.28 billion people listed in the data set, and they share

7,184 different surnames. Rodriguez-Larralde et al. (2011) compared

the surname data in eight European countries, three South American

countries, the United States, and Yakutia, and they found the number

of different surnames of most countries is more than 100,000, which

is much more than that of China. China has a relatively small number

of different surnames, even its population is quite large. This fact is

attributed to Chinese specific surname history and culture. Chinese

surname possibly originated in 5000 years ago (Hanks, 2003). At the

1By contrast, hereditary surnames of other countries and areas formed latterly,

such as European surnames originated in the first century BC, Japanese and

Korean surnames originated in the fifth century AD.

2The five-digit numbers are assigned in the order of surnames that occur in the

data processing, for example, 10,001 is assigned to the first surname, 10,002 is

the second, and so on.

SHI ET AL. 429



very beginning, it was a symbol of social status and nobility, and sur-

name included clan name and lineage name (He, Hu, Zhu, Xia, &

Huang, 2016). In the Han dynasty (206 BC–220 AD), lineage names

became indistinguishable from clan names, and they both evolved into

modern Chinese surnames. Moreover, patrilineal inheritance of Chi-

nese surnames has been strongly maintained and reinforced by cul-

tural constraints. Most Chinese surnames in use today had formed for

2000 years. This has been claimed by Yuan, Zhang, Ma, and Yang

(2000). They compared the distributions of 100 most common Chi-

nese surnames in Song dynasty (960–1279 AD), Ming dynasty

(1368–1644 AD), and present day, and found the three distribution

curves are nearly overlapping. The stable distribution of surnames

indicates that Chinese surnames are well-preserved for a long period.

However, Chinese population has risen almost twentyfold since Han

dynasty. As a result, the number of different surnames of China is far

less than those of most countries in the world.

China is a multiethnic country with 55 minorities. The dominant

Han people comprise 91.5% of the Chinese population.3 Because of

the differences among surname cultures, the surname structure of

some minority regions differs from that of the predominantly Han

regions. In particular, people in some ethnic minority groups do not

use surnames, such as Yi, Miao, Tibetan, and Mongolian. Unlike most

western countries, Chinese people put their surnames before first

names. For the citizens without surnames whose population is very

small, NCIIC took the first Chinese character of their names as their

surnames. Although these surnames are not paternally inherited, they

are still influenced by regional naming cultures.

2.2 | Isonymic distance

Isonymy measures how frequent the same surnames are shared by

two geographical areas (Lasker, 1977). It can also indicate the inbreed-

ing frequency and biological relatedness within a given area (Crow,

1980; Crow & Mange, 1965; Lasker & Mascie-Taylor, 1985). The iso-

nymy between areas i and j can be defined as Iij ¼
PS

k¼1pkipkj, where S

is the total number of surnames in both areas, pki and pkj are the rela-

tive frequencies of surname k in the area i and j, respectively. Barrai

et al. (1996) defined the inverse of isonymy in one area, 1=
PS

k¼1p
2
k , as

alpha (α), which is called the effective surname number (Herrera Paz

et al., 2014).

In surname studies, the isonymic distance measures the dissimilar-

ity of surname structure between two areas. A small isonymic distance

between two areas indicates that their surname structures are

strongly similar. There are three ways of calculating the isonymic dis-

tance: Lasker's distance, Nei's distance and Euclidean distance. Las-

ker's distance is defined by LDij =−log (Iij) (Rodriguez-Larralde et al.,

1998). Nei's distance is defined by NDij ¼ − log Iij=
ffiffiffiffiffi
IiIj

p� �
(Nei, 1972).

Euclidean distance is defined by EDij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Ps
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
pkipkj

pq
(Cavalli-

Sforza & Edwards, 1967). The matrix of isonymic distances can be

used to express the multilateral dissimilarities of surname structures

among different areas. It is typically used as the input data in a name-

based ethnicity classification.

2.3 | Building spatial network

A network is a collection of edges that connect nodes, and can be

defined as a graph G(V, E) with a node (or vertex) set V and an edge

(or link) set E. In our spatial network, the node set represents prefec-

tures and the edge set represents interrelations between two prefec-

tures. The original network encompasses the matrix of isonymic

distances, is fully connected, and contains an enormous amount of

redundant information. In contrast, an MST connects all the nodes

using the minimum possible total edge weight and disallows cycles. It

provides a skeletal structure with only n−1 essential edges (with rela-

tively small isonymic distances), where n is the number of nodes in

network G. Although the network constructed using the MST algo-

rithm retains the most essential edges, it loses many important edges

of the original network.

Extending the MST, we develop a MMST to build the spatial

network. This algorithm aims to retain as many of important edges

of the original network as possible, at the premise of removing its

redundant edges. As in most schemes of ethnicity classification,

the algorithm uses the matrix of isonymic distances (M) as input

data. The MMST network combines L layers of MST networks, and

the adjacent matrix of MMST is the sum of L adjacent matrices of

MST networks. The procedure of building MMST network is an

iterative process of applying the Prim's algorithm (Prim, 1957) in

each step to integrate an additional MST layer derived from the

remaining portion of the isonymic distance matrix. It thus guaran-

tees that each element of the isonymic distance matrix extends to

the edge of MMST at most once. When one node connects to all

other nodes in the network, the iterative process of adding new

layer ends, and the MMST network reaches its maximum number

of layers.

2.4 | Quantifying network dissimilarity

To investigate the change of network topology with increasing the

number of layers, we calculate the network dissimilarity between two

adjacent networks in the procedure of building network. We use the

D-value proposed by Schieber et al. (2017) to quantify network dis-

similarity. Based on the standard information-theoretic metrics,

D-value quantifies the differences of topological structure between

networks with a three-term function. The network dissimilarity

between G and G
0
is defined by

D G,G0ð Þ ¼ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J μG,μG0ð Þ

log2

s
+ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NND Gð Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NND G0ð Þ

p��� ���
+
ω3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J PαG,PαG0ð Þ

log2

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J PαGc ,PαGc0
� �

log2

s0
@

1
A:

ð1Þ

The first term on the right side of the equation focuses on the net-

work distance distribution, μ, in which J is Jensen-Shannon diver-

gence. The second term characterizes the node heterogeneity, in

which NND is network node dispersion of a network with diameter

d and is given by

3See official figures reported in the National Bureau of Statistics of China

(www.stats.gov.cn).
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NND Gð Þ¼J P1,…,PNð Þ
logd+1

: ð2Þ

The third term captures the difference of node centrality, in which PαG

is the alpha-centrality distribution of network G and Gc is the comple-

ment of G. Here ω1, ω2, and ω3 are the weights of the three terms thus

we have ω1 + ω2 + ω3 = 1.

2.5 | Network community detection

Network communities or clusters are groups of nodes with dense inter-

nal connections. To measure the effectiveness of community detection,

modularity has been proposed (Newman, 2006). High modularity levels

indicate good partitioning. Modularity is defined to be the fraction of

edges within the given group minus the fraction expected if edges were

randomly distributed.

There are many clustering methods that can be applied to various

types of networks (Fortunato, 2010). We here use the fast unfolding

algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) based on an

MMST network of isonymic distances to classify its nodes. This algorithm

first sets initial partition and iterates it until there is no further improve-

ment in the modularity. The modularity is a scalar value that compares

the actual density of edges inside communities and the corresponding

random case (Newman, 2006). This algorithm is implemented in Gephi

0.9.2,4 in which the resolution γ is an adjustable parameter that controls

the size of community. When γ ! 0, each node is a separate commu-

nity. In this article, we adjust the parameter γ to get eight communities

for all network community detection. By doing so, we set the parameter

γ as 0.75, 0.7, and 0.6 for 9-laye, 10-layer, and 11-layer MMST,

respectively.

3 | RESULTS

3.1 | Distribution of isonymic indexes

The Supporting Information Table S1 shows the distribution of isonymic

indexes in 362 Chinese prefectures. In addition to I and α, we present

the number of individuals (N), the number of different surnames (S), and

the ratio of number of different surnames to sample size (S/N) for pre-

fectures in this table. The average I for 362 prefectures is

0.0365 � 0.0149, which is significantly larger than those of United

States (Barrai, Rodriguez-Larralde, Mamolini, Manni, & Scapoli, 2001),

France (Scapoli et al., 2005), Argentina (Dipierri et al., 2005), Honduras

(Herrera Paz et al., 2014). The average α for 362 prefectures is

30.41 � 9.45, which is obviously smaller than those of the countries

mentioned above. S/N varies from 0.000087 (i.e., an average of 11,432

individuals per surname) to 0.017854 (i.e., an average of 56 individuals

per surname) over all the prefectures. As mentioned in subsection 2.1,

due to the long and stable surname inheritance, the number of modern

Chinese surnames is relatively small. The number of Chinese population

is so huge that the average population owned by a surname is much

larger.

3.2 | Statistical property of isonymic distances

As mentioned above, there are three kinds of isonymic distances. We

calculate these distances respectively and analyze their distribution

characteristics. As shown in Figure 1, none has a normal distribution.

The ED curve has two obvious peaks, and those of LD and ND have

fat tails. The minor peak of the ED curve and the tails in LD and ND
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FIGURE 1 Histogram of isonymic distance with fitted densities (mixtures of normal distributions) for (a) ED, (b) LD, and (c) ND. The fitting is

implemented by means of expectation conditional maximization (ECM) algorithm (see Benaglia, Chauveau, Hunter, & Young, 2009)
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FIGURE 2 D-values between k-layer MMST and k + 1-layer MMST 4It is available at https://gephi.org/.
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distributions are attributed to some minority areas where most people

may have either rare surnames or no surnames, especially the prefec-

tures in Xizang province. The averages of ED, LD, and ND for Xizang

are 0.8388 � 0.0929, 2.7504 � 0.3232, and 1.2513 � 0.3484,

respectively. From Figure 1, we can see that almost all isonymic dis-

tances between Xizang's prefectures and other prefectures contribute

to the minor peak of ED and the fat tails of LD and ND. If we remove

the data of Xizang, the minor peak and fat tails of isonymic distance

curves will become faint.

When building an MMST network, a good measure of isonymic

distance should be more distinguishable within the range of relatively

smaller values. Figure 1b,c show that LD and ND have positively

skewed distributions, and that most of the values are in the small dis-

tance range. Figure 1a show that ED is a mixture of normal distribu-

tions in which the left part of the distribution is dispersed and

distinguishable. As Rodriguez-Larralde, Gonzales-Martin, Scapoli, and

Barrai (2003) argues, ED has the advantage over the other isonymic

distances when few surnames are shared in two groups. Therefore,

we choose the matrix of ED as input data for building the spatial

network.

3.3 | Determination of network layer

When we add additional layers to the original MST network, the

MMST recovers some lost important edges, but an excess of

additional layers can produce redundant information. An appropri-

ate layer of network should be large enough to retain most valu-

able information, but not too large, and be small to minimize

redundant edges. Figure 2 shows the variation of D-value along

k (the MMST layer), where the D-value at k is calculated using the

k-layer MMST and the k + 1-layer MMST. When the iterative pro-

cess of adding layer ends, the maximum number of layers that the

FIGURE 3 Visualization of the constructed spatial network. To better illustrate the network, we exclude the nodes whose degree is less than

24 and thus only 86 nodes and 663 links of the network are remained in this figure. The size of cycles (refer to nodes) is directly proportional to
the degree of nodes, and the thickness of lines is inversely proportional to the weight (ED) of links. The colors of nodes represent the results of
community detection
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MMST algorithm can generate is 96. Thus k 2 (1, 95). With the

number of layers k increasing, D-value decreases and converges to

0. This indicates that topological change of the spatial network

decreases as k increases, and that eventually ceases when the

scale of network becomes sufficiently large. The rationale of

determining layer is to choose a turning point that D-value falls

rapidly before it and remains nearly unchanged after it. Figure 2

shows that the D-value around 10 matches this criteria. We thus

select 10 as the number of MMST layer. In fact, networks with

the numbers of layer around 10 have topological structures similar

to that of 10-layer MMST, as well as their clustering results (The

clustering results based on 9-layer MMST and 11-layer MMST are

shown in the Supporting Information Figure S1 and S2,

respectively).

3.4 | Spatial network

Figure 3 shows a spatial network generated using the Fruchterman–

Reingold algorithm (Fruchterman & Reingold, 1991) and visualized

using Gephi 0.9.2. This spatial network contains 362 nodes and 3,610

edges. On average, there are approximately 20 edges connected to

one node. The minimum degree and maximum degree are 10 and

71, respectively. The degree distribution exhibits a very skewed char-

acter that can be fitted as a power-law form with an exponent of

4.22.5 As we can see from Figure 3, the sizes of several nodes (which

are prefectures) are obviously bigger than those of the rest. These

prefectures are usually regional centers of social, economic and cul-

tural activities, such as Beijing, Guiyang, and Chengdu. Some of them

are transportation hubs, such as Jiayuguan, Qiqihaer, and Chongqing.

They can also be emerging immigrant cities, in which immigrants come

from multiple sources, such as Shihezi, Shenzhen, and Panzhihua.

We detect communities in the spatial network by using the fast

unfolding algorithm. The prefectures are grouped into eight communi-

ties. According to the corresponding geographical locations in China,

these communities are marked using letters A through H, and labeled

by Northeastern China, Northern China I, Northern China II, North-

western China, Eastern China, Southwestern & Central China, Western

China, and Southern China respectively.

To determine the accuracy of the community detection based on

the network topology, we calculate the average ED (denoted by AED)

between any two communities and within a community. The former is

the average of Euclidean distances between all possible two-

community prefecture pairs, and the latter is the average of all Euclid-

ean distances between any two prefectures within the corresponding

community. Figure 4 shows AED matrix as a heat map in which its

FIGURE 5 Map showing the allocations of eight communities in the spatial network. The map was developed by ArcGis 10.2.2

5The fitting was performed by using Newman's algorithm (see Clauset, Shalizi, &

Newman, 2009).
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elements are the corresponding AEDs. With the one exception of the

AED between communities B and D, all inter-group distances are

larger than the corresponding intra-group distances. It indicates that

the prefectures within a community have similar surname structure

with each other rather than inter-community. Although the edges of

the resulting spatial network are limited, it exhibits a strong commu-

nity partition. Note that the AEDs between and within A–D communi-

ties, including the exceptional AED, are smaller than 0.3, and almost

all prefectures of A–D communities locate in northern areas of China.

This is in accord with the study of Yuan and Zhang (2002) that the flat

landscape of northern China has made the population more mobile

than those in southern China. However, we can distinguish A–D com-

munities by detecting community in the spatial network even though

they are much similar with each other on surname structure.

4 | DISCUSSION

The community structure in the MMST, as shown in Figure 3, is

obtained by computing the similarity of surname structure between

prefectures. Only topological properties of the network are taken into

account rather than geographical ones in this procedure. The commu-

nity partition is evaluated by comparing the inter-community dis-

tances with intra-community ones and the results are presented in

Figure 4. To justify the efficacy of this partition, we also need to eval-

uate the closeness of the prefectures within each community shown

in Figure 3 from a geographical viewpoint.

Figure 5 shows a map of eight communities in the spatial net-

work. Note that the regions in one community are usually geographi-

cally adjacent, reflecting the Tobler's First Law of Geography:

everything is related to everything else, but nearby things are more

closely related than distant things (Tobler, 1970). Note also that sev-

eral provinces are separated into different communities, indicating

that some prefectures of one province are more similar to certain pre-

fectures of other provinces, and that this resulting ethnicity classifica-

tion is not coincident to administrative divisions.

Some geographical factors affect the community detection

results. Waterways promote human mobility, and mountains hinder

it. As shown in Figure 5, the Yangtze river cuts through three com-

munities, while the Yellow river cuts through four communities,

and enters community D twice. The Yangtze river and the Yellow

river are the two longest rivers in China, and both pass China

through west to east. The difference between them is, the former

is a waterway channel and characterized by a large water discharge

and a deep-incised valley, the latter is not an efficient way of

transportation and characterized by huge sediment discharge and

steep longitudinal profile (Saito, Yang, & Hori, 2001). In contrast to

the Yellow river, the Yangtze river is much more convenient for

human mobility, the upstream and downstream of the Yangtze river

are more likely to be grouped into the same community. Especially,

community F is located along the Yangtze river, and wraps a large

part of the river. We can also find that the Hengduan Mountains

define the geographical boundary between G and F communities.

Similar blocking effect can be found in the boundaries between dif-

ferent communities, which are defined respectively by Qilian

Mountains (between D and G), Helan Mountains (between C

and D, G), Taihang Mountians (between B and C), Yimeng Moun-

tains (between A and B in Shandong province), Qinling Mountains

(between D and F), Nanling Mountains and Wuyi Mountains

(between F and H).

Historic migration can also effect separations within provinces.

The division of the prefectures within Shandong province reflects a

historic migration from Shandong to the three northeastern provinces

(Heilongjiang, Jilin, and Liaoning), which is the well-known “Rush to

Northeast”. This mass migration had lasted for more than 300 years

from the early Qing dynasty to the end of the last century. Natural

disasters and excessive population density prompted the citizens of

Shandong to leave their homeland and make their living elsewhere.

Because some prefectures in Shandong border the Bohai sea, some

emigrants there used the seaway to move to northeastern provinces.

Those in prefectures not bordering the sea used land routes for their

migrations. These two transportation methods split Shandong prov-

ince into two parts with different surname structures. Note that the

north part of Shaanxi province and most of Shanxi province share the

community C with the eastern part of Neimenggu, reflecting the well-

known “Going to the West Gate” migration. This historic migration

had lasted for approximately 400 years, from the middle of Ming

dynasty to the early Chinese Republic. People in Shaanxi and Shanxi

moved to Neimenggu because of its commercial viability, fertile land,

and peaceful environment.

From the perspective of migration, community F is the result of

the consecutive mass migrations of “Jiangxi Fills Huguang” and

“Huguang Fills Sichuan”, where “Huguang” refers to the areas of mod-

ern Hunan province and Hubei province. Especially during Yuan-Ming

and Ming-Qing transitional periods, due to the political and economic

distresses a lot of people migrated from Jiangxi to Huguang, and from

Huguang to Sichuan. We trace the routes of the three historical

migrations mentioned above on a map of China in the Supporting

Information Figure S3.

There are also outliers geographically distant from the center of

their communities. Three typical cases, Alaer, Shihezi, and Wujiaqu,

are actually the prescribed locations of the Production and Construc-

tion Corps (PCC) in Xinjiang province. PCC was established in 1954 to

reclaim and cultivate soil and to consolidate the border areas

(McMillen, 1981). The massive population influxes shaped the compo-

sition of these three prefectures and caused their surname structure

to differ from those of nearby prefectures (Liu, 2007). These three

outlier prefectures are small but appear as high-degree nodes in the

network graph (see Figure 3) because the surname structure here is

similar to the former prefectures of the immigrants. We also find that

Shihezi and Wujiaqu belong to the community D, while Alaer belongs

to the community F. This fact indicates that most migrants of Shihezi

and Wujiaqu were from the north, while those of Alaer were from the

south.

In addition to geographical factors and historic migrations we

mentioned above, there are many other factors contribute to the

result of population divisions, such as trade and economic factors, as

well as isolation of culture and language. The western part of commu-

nity D is the famous “Hexi Corridor”. As a part of the “Northern Silk

Road”, it had been the most important route from north China to
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central Asia for traders, and also promoted population integration

along the route. The formation of community E is also partly caused

by trade and economic factors. Community E is the region encircling

Yangtze Delta economic zone, which embodies some historical or

modern economically developed prefectures, such as Suzhou, Nan-

king, and Shanghai. The former two cities show the two greatest lon-

gevity (2,430 and 2158 years, respectively) through their being the

largest 50 cities in world from 430 BC to AD 2000 (Batty, 2006), and

the latter one is the commercial and financial center of China nowa-

days. A long regional economic development has promoted population

mobility within Yangtze Delta economic zone. The formation of com-

munity G and H is typically caused by isolation of culture and lan-

guage. They are located respectively in the most western and

southeastern of China. The people live in both areas have formed

their own regional cultures and languages that are quite different from

those elsewhere.

In fact, the factors we mentioned above sometimes take their

effects together. For example, “Hexi Corridor” is an important route

of trade, which was determined by its geographical condition. There

are many oases along the path, and it borders Qilian Mountains to the

south, Gobi desert to the north. Some historical migrations were also

partly driven by economic factors. A typical case is “Going to the West

Gate”.

In contrast to the clustering result derived from k-means cluster-

ing (see Figure S4 in Supporting Information), the eight community

allocations derived from MMST network (see Figure 5) are not only

clear and intuitive but also sensible and reasonable. In the k-means

clustering algorithm, prefectures with small isonymic distance are

grouped into one cluster. However, in our approach, prefectures are

in a community only if they are densely connected with one another

in the MMST network. In the MMST network, all prefectures only

have several most relevant connections. Two prefectures are grouped

into one cluster by k-means and may be far away from each other in

our network topology. The prefectures of some clusters scatter over

the map in Supporting Information Figure S4, while those in Figure 5

are basically continuous and complete. The western China is a densely

populated area of minor ethnic groups in which even some people do

not have inheritable surname, and thus its surname structure differs

from those in other places. As shown in Figure 5, the prefectures in

the western China are mainly in the community G, while they are par-

titioned into several groups in Supporting Information Figure S4.

In summary, the construction of MMST network combining with

the community detection in it is an effective approach to study

regional surname affinities. This algorithm guarantees the connectivity

of network, in which no nodes are isolated. It also ensures that all

nodes have at least L (the number of layers in MMST) strongest links

of them. The viewpoint of network topology is the most essential

merit of MMST that makes this algorithm different from traditional

clustering techniques. In other words, the traditional clustering tech-

niques are prone to offer biased results of ethnicity classification, for

the reason that they are equivalent to community detection in fully

connected weighted network, which overemphasizes surname kinship

and downgrades geographical consanguinity. In contrast, the topology

of the MMST spatial network yields meaningful results of geo-

genealogy and ethnicity classification. The MMST algorithm can also

be used to filter relevant information in many other issues. Our work

here calls for a deep mining of the spatial and surname networks to

reveal more hidden patterns in the surname data set.
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